Mapeamento das Áreas Inundáveis nas Margens do Rio São Francisco no Trecho entre o Reservatório da UHE de Sobradinho e a Foz do Rio São Francisco – ACT 003/2008 – CHESF/ANA

Geraldo Lucatelli Especialista em Geoprocessamento Coordenação de Eventos Críticos – COVEC Superintendência de Operações e Eventos Críticos – SOE/ANA 17/09/2018

ASPECTOS LEGAIS PARA O CONTROLE DE CHEIAS NO ÂMBITO DA POLÍTICA NACIONAL DE RECURSOS HÍDRICOS

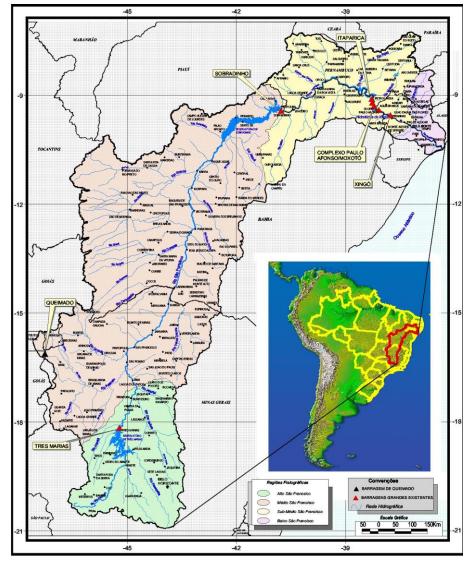
BASE LEGAL

A Constituição Federal estabelece, no Título III, Capítulo II, Artigo 21°, Inciso XVIII, que compete à União: "Planejar e promover a defesa permanente contra as calamidades públicas, especialmente as secas e inundações".

BASE LEGAL

A Lei N° 9.433, em seu Art. 2°, inciso III, dispõe que são objetivos da Política Nacional de Recursos Hídricos "a prevenção e a defesa contra eventos hidrológicos críticos de origem natural ou decorrentes do uso inadequado dos recursos naturais".

BASE LEGAL


A Lei N° 9.984, que cria a Agência Nacional de Águas - ANA, em seu Art. 4°, dispõe que cabe a ANA:

"Planejar e promover ações destinadas a prevenir ou minimizar os efeitos de secas e inundações, no âmbito do Sistema Nacional de Gerenciamento de Recursos Hídricos, em articulação com o órgão central do Sistema Nacional de Defesa Civil, em apoio aos Estados e Municípios"

"Definir e fiscalizar as condições de operação de reservatórios por agentes públicos e privados, visando a garantir o uso múltiplo dos recursos hídricos, conforme estabelecido nos planos de recursos hídricos das respectivas bacias hidrográficas"

Principais dados:

- Área 634.781 km²
- Ext. rio principal 2.700 km

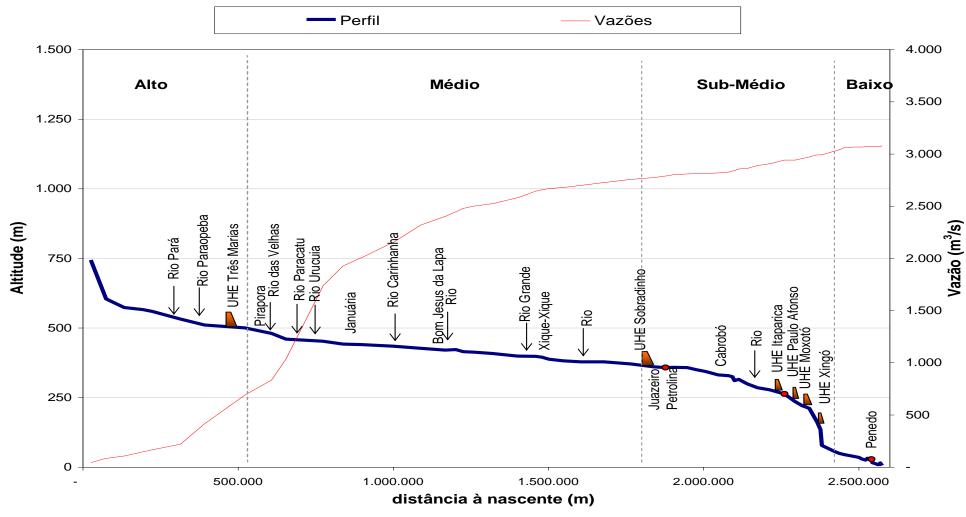
Regiões Fisiográficas:

- **Alto** clima úmido, alta pluviosidade anual, região formadora das principais cheias.
- **Médio** trecho plano e de maior extensão.
- **Submédio** caracteriza-se pela alta declividade e consequente cascata de usinas hidrelétricas, e também pelo clima árido e de baixa pluviosidade.
- **Baixo** trecho encaixado de vazões regularizadas, e características de estuário.

Controle de Cheias

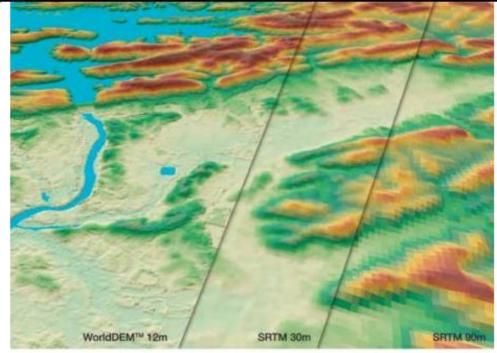
BACIA DO RIO SAO FRANCISCO REDE HIDROMETRICA

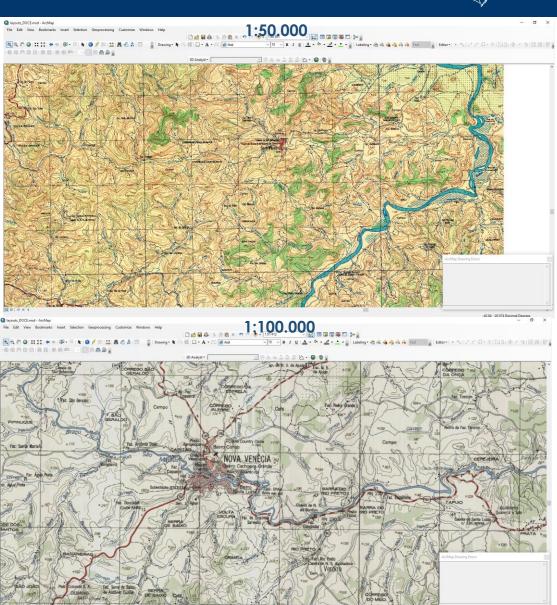
Quadro 2 Rede hidrométrica – características das estações


Estação	Tipo de dado	Órgão	Lettura		Coleta de dados	:
	coletado	operador	de dados	Transmissão	Órgão	Freqüência
FAZENDA LIMEIRA		ANA			CEMIG	
PORTO ANDORINHA	Fr/P	CEMIG	7HE 17H	TELEMEDIÇÃO	CEMIG	HORÁRIA
PORTO PARÁ	Fr/P	CEMIG	7H E 17H	TELEMEDIÇÃO	CEMIG	HORÁRIA
PORTO PARAOPEBA	Fr/P	CEMIG	7HE 17H	TELEMEDIÇÃO	CEMIG	HORÁRIA
PORTO INDAJÁ	Fr/P	CEMIG	7HE 17H	TELEMEDIÇÃO	CEMIG	HORÁRIA
PONTE BR-040	Fr/P	CEMIG	7HE 17H	TELEMEDIÇÃO	CEMIG	HORÁRIA
PIRAPORA	Fr/P	CEMIG	7HE 17H	TELEWEDIÇÃO	CEMIG	HORÁRIA
SÃO ROMÃO	Fr0 /P	ANA	7HE 17H (1)	TELEFONE	CHESF	DIÁRIA-7H E 17H
SÃO FRANCISCO	FrO /P	ANA	7HE 17H (1)	TELEFONE	CHESF	DIÁRIA-7H E 17H
CARINHANHA	FD/P	ANA	7HE 17H (1)	TELEFONE	CHESF	DIÁRIA-7H E 17H
BOM JESUS DA LAPA	FD/P	ANA	7HE 17H (1)	TELEFONE	CHESF	DIÁRIA-7H E 17H
GAMELEIRA	FD/P	ANA	7HE 17H (1)	TELEFONE	CHESF	DIÁRIA-7H E 17H
MORPARÁ	Fr0 /P	ANA	7HE 17H (1)	TELEFONE	CHESF	DIÁRIA-7H E 17H
BOQUERÃO	FD/P	ANA	7HE 17H (1)	TELEFONE	CHESF	DIÁRIA-7H E 17H
JUAZEIRO	Fr0 /P	ANA	7HE 17H (1)	TELEFONE	CHESF	DIÁRIA-7H E 17H
STA, MA, B, VISTA	FD/P	ANA	7HE 17H (1)	TELEFONE	CHESF	DIÁRIA-7H E 17H
BÓ	FrO /P	ANA	7HE 17H (1)	TELEFONE	CHESF	DIÁRIA-7H E 17H
BELÉM B. FCO.	FD/P	ANA	7HE 17H (1)	TELEFONE	CHESF	DIÁRIA-7H E 17H
PIRANHAS	FD/P	ANA	7HE 17H (1)	TELEFONE	CHESF	DIÁRIA-7H E 17H
PÃO DE AÇÜCAR	FrO /P	ANA	7HE 17H (1)	TELEFONE	CHESF	DIÁRIA-7H E 17H
TRAIPÚ	FD/P	ANA	7HE 17H (1)	TELEFONE	CHESF	DIÁRIA-7H E 17H
PROPRIÁ	FrO /P	ANA	7HE 17H (1)	TELEFONE	CHESF	DIÁRIA-7H E 17H

⁽¹⁾ em condições de cheis 7h, 12h, 17h, 23h

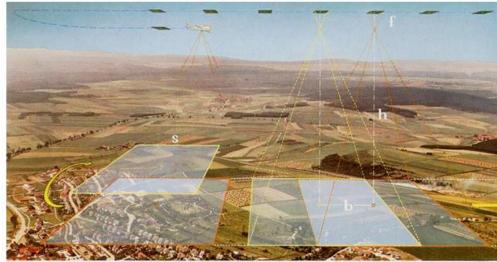
Perfil longitudinal do rio São Francisco

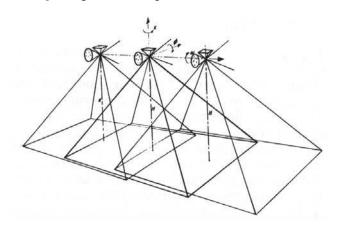


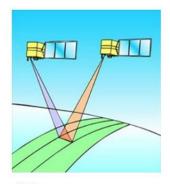

Mapeamento de Cheias

Resolução e Escala

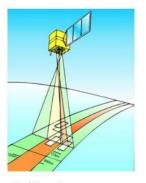
Comparação visual entre WorldDEM e SRTM 30m e SRTM 90m:




Aerofotogrametria – Excelente precisão (cm), porém com alto custo (R\$) de aquisição



Estereoscopia no mapeamento aéreo


Fotogrametria por satélite – Precisão moderada (m), alto custo (R\$) de aquisição e sujeita a interferências de nuvens

Satélites de recursos terrestres

Visão estereoscópica

Os diferentes campos de visada do CBERS-1 e 2

Radar – Boa Precisão (m), com alto custo (R\$) de Aquisição para Geração de MDE (interferometria)

Sem interferência de nuvens do período chuvoso e com resposta espectral excelente para corpos d´água

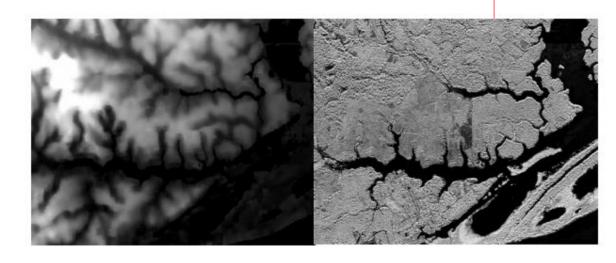
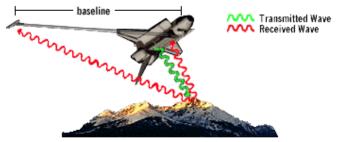



FIGURA 7: Modelo Digital de Terreno e Orto-Imagem P.

Radar signals being transmitted and recieved in the SRTM mission (image not to scale).



FIGURA 8: Representação 3D do MDS e Orto-imagem X sobreposta (Rio Tapajós - PA).

Lidar – Excelente precisão (mm), porém com alto custo (R\$) de aquisição

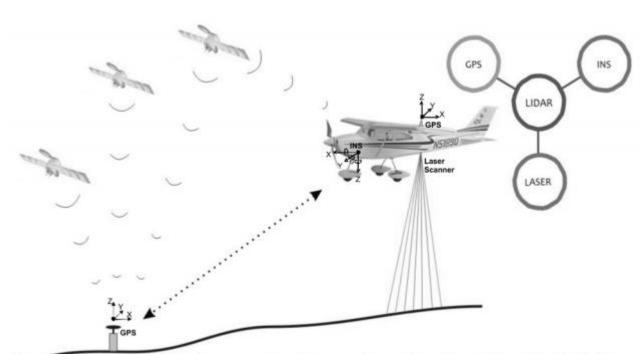


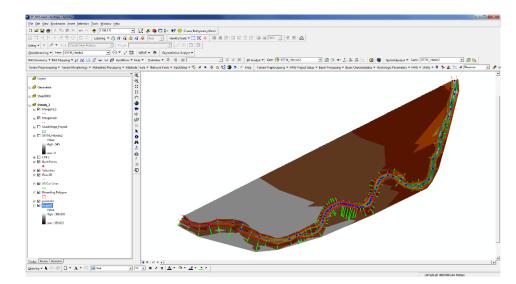
Figura 1. Princípios e componentes de um sistema ALS.

opografia de Precisão – Excelente precisão (mm), com alto custo (R\$), porém a CHESF têm equipes para prestação deste serviço

Fixação e leituras de pontos

Coletando outros pontos

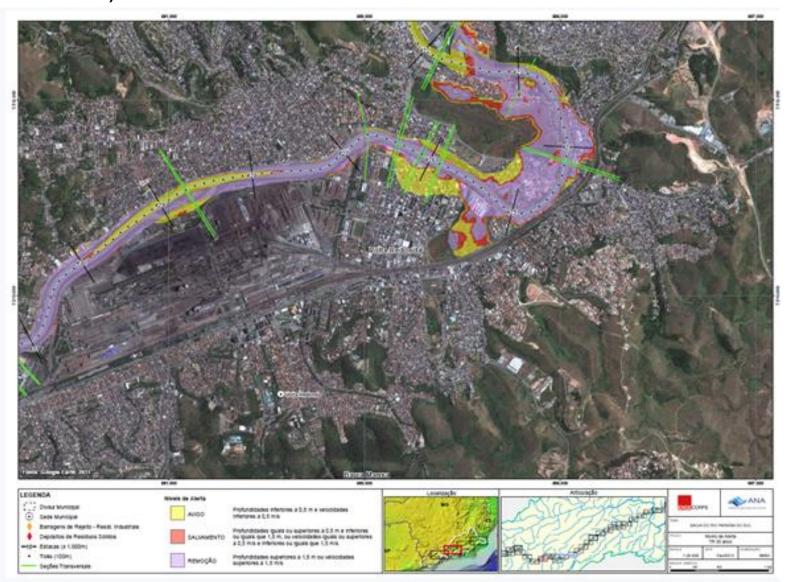
Elaboração de Mapas


Modelagem Hidrodinâmica do São Francisco: Alto Custo (R\$), demorado, porém avalia todo o trecho (mais indicado)

Radar signals being transmitted and recieved in the SRTM mission (image not to scale).

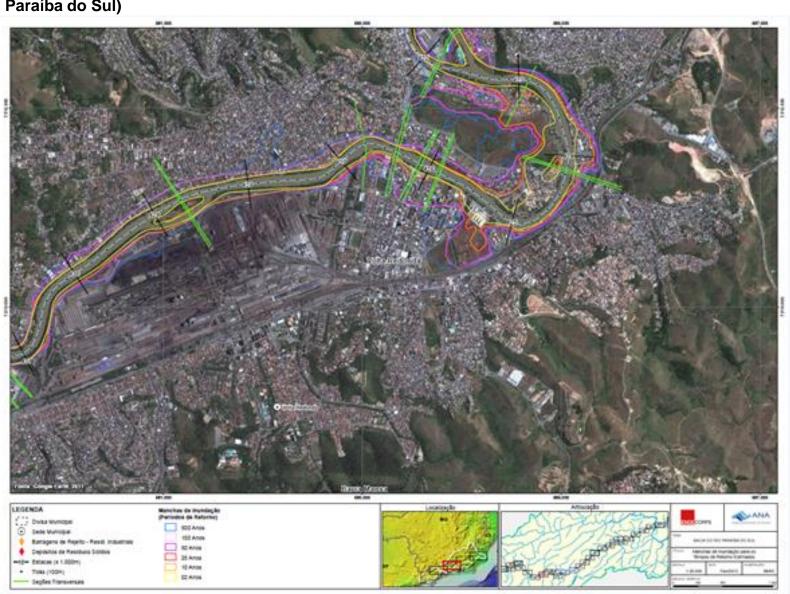
SRTM resolution
USGS 30 m data

Best existing global map
USGS GTOPO30 1 km data set


Seções Topobatimétricas

Modelagem Hidrodinâmica (Alguns resultados na Bacia do Rio Paraíba do Sul)

Mapas de alerta indicam que localidades estão sujeitas aos níveis de alerta "aviso", "salvamento" e "remoção", que foram estabelecidos em função da profundidade e da velocidade das águas;

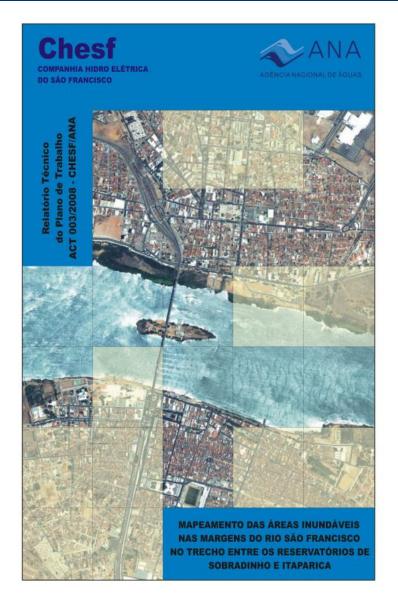


Modelagem Hidrodinâmica (Alguns resultados na Bacia do Rio Paraíba do Sul)

Mapas de inundação apresentam as marcas das inundações para cada recorrência

Modelagem Hidrodinâmica (Alguns resultados na Bacia do Rio Paraíba do Sul)

Mapas de profundidade indicam a altura da inundação nas localidades.



Apresentação

- As elevações periódicas de vazão, que provocam o extravasamento das águas da calha principal do rio para suas áreas marginais, e a ocupação intensa e desordenada das várzeas inundáveis, geraram a necessidade de um conhecimento detalhado e espacializado da planície de inundação do Rio São Francisco no trecho entre Sobradinho e Itaparica.
- Esse projeto é de interesse da sociedade ribeirinha do Vale do São Francisco e **atende ao Compromisso de Ajuste de Conduta (CAC) estabelecido entre a Companhia Hidro Elétrica do São Francisco CHESF e o Ministério Público Federal**, através da Procuradoria da República no Município de Petrolina, em função de Ação Civil Pública nº 2007.33.05.000254-6, movida por este Ministério durante o período úmido 2006/2007.

Objetivos

- mapear a área ribeirinha e a dinâmica fluvial do Rio São Francisco com uso de técnicas de geoprocessamento, processamento digital de imagens de satélite de média e alta resolução espacial e topografia de precisão.
- Levantamento Detalhado de áreas críticas às zonas ribeirinhas urbanas dos municípios de Juazeiro e Petrolina, com destaque para a parte ribeirinha do Angary (Juazeiro), e o Balneário da Ilha do Rodeadouro (Petrolina). (patamares de vazões de 2.000, 4.000, 6.000 e 8.000m³/s)
- Levantamento Regionalizado nas áreas não críticas foram consideradas as zonas ribeirinhas dos municípios de Sobradinho, Juazeiro, Curaçá e Abaré, na Bahia e Petrolina, Lagoa Grande, Santa Maria da Boa Vista, Orocó, Cabrobó e Belém do São Francisco, em Pernambuco. (levantamento da área urbana e rural e patamares de vazões de 2.000 e 6.000 m³/s)
- Os resultados desse trabalho subsidiarão a adoção de medidas não-estruturais preventivas e mitigadoras para melhorar a convivência da população com o rio, haja vista que seus principais produtos são mapas com a visão espacial da região estudada e o alcance das linhas d'água para as vazões de 2.000, 4.000, 6.000 e 8.000 m³/s. Citados resultados serão divulgados através de material informativo a ser distribuído com as entidades competentes.

Metodologia

- No Mapeamento Regionalizado foram produzidos Mapas de Uso do Solo, com identificação de duas classes de uso: área urbana e área rural, nas escalas 1:100.000 e 1:250.000, bem como Cartas-imagem nas escalas 1:100.000 e 1:250.000, com delimitação das linhas d'água para as vazões de 2.000 e 6.000 m³/s, através da sua digitalização sobre imagens do satélite CBERS-2/CCD (20,00 m de resolução espacial) e do RADARSAT-1 (30,00 m de resolução espacial). O mapeamento do Uso do Solo foi realizado pelo método da classificação supervisionada de imagens do satélite CBERS2/CCD. Os softwares utilizados foram o ARCGIS 9.1 e o ERDAS IMAGINE 9.0.
- No Mapeamento Detalhado, elaborado para as áreas situadas nas orlas de Petrolina e Juazeiro e o Balneário da Ilha do Rodeadouro foram produzidos Mapa de Uso do Solo, respectivamente, nas escalas 1:2.000 e 1:1.000, com identificação de ruas, quadras e praças e carta-imagem, com delimitação das linhas d'água para as vazões de 2.000, 4.000, 6.000 e 8.000 m³/s. Observa-se que no Balneário da Ilha do Rodeadouro não há ruas, bairros, igrejas, praças e, portanto, não foi levantado o Uso do Solo nessa região.

Mapeamento Detalhado

Implantação da rede geodésica de referência, iniciada com o reconhecimento dos marcos geodésicos IBGE existentes, seguida da análise e escolha dos locais para implantação de outros marcos referenciais e auxiliares, necessários ao desenvolvimento dos trabalhos topográficos.

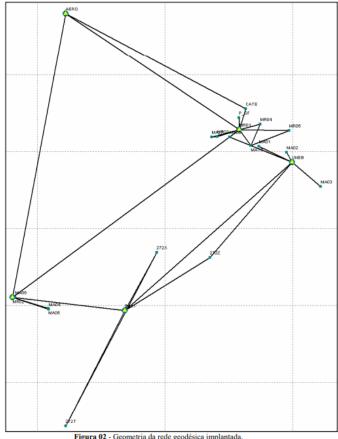


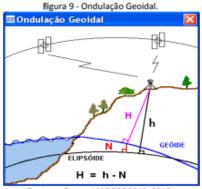
Figura 02 - Geometria da rede geodésica implantada.

REDE DE REFERÊNCIA CHESF Linhas de Base e Irradiamentos

Linha de base	DeltaX (m)	Desvio padrão X(m)	DeltaY (m)	Desvio padrå o Y(m)	DeltaZ (m)	Desvio padrão Z(m)	Comp. (m)	Desvio padrão (m)	Tempo Obs	N° Sat	PDOP
MR02 - MA06	66,07	0,001	82,29	0,001	-8,513	0,001	105,875	0,002	00:14:55	9	1,2
93088 - MR02	-2784,877	0,012	-436,496	0,012	-10928,377	0,012	11286,075	0,021	01:18:05	9	1,4
MR02 - MR01	6607,422	0,012	6079,054	0,013	6410,791	0,012	11032,278	0,021	00:38:55	8	1,5
93089 - MR02	-2806,496	0,006	-3402,072	0,006	539,695	0,005	4443,173	0,01	00:20:20	9	1,1
MR02 - MA04	868,044	0,003	1132,177	0,003	-466,163	0,002	1500,878	0,005	00:14:55	8	1,4
MR02 - MA05	861,292	0,003	1120,612	0,004	-433,095	0,002	1478,23	0,006	00:15:00	8	1,5
93178 - 2721Em	-968,352	0,003	-1304,607	0,003	647,338	0,003	1748,929	0,005	00:22:00	7	1,8
93178 - MA08	-1471,861	0,004	-1970,84	0,006	987,031	0,004	2650,437	0,008	00:19:00	9	1,4
2721Em - MA08	-503,504	0,002	-666,234	0,004	339,692	0,002	901,54	0,005	00:20:35	8	1,4
93178 - 93089	-4983,03	0,009	-4389,557	0,01	-5687,177	0,009	8743,156	0,017	00:30:35	10	1,4
93089 - 2720Z	2427,207	0,005	2323,271	0,005	2030,97	0,005	3926,036	0,008	00:30:35	10	1,4
93178 - MA03	606,741	0,003	950,042	0,002	-949,235	0,002	1473,69	0,004	00:16:00	9	1,8
93178 - MA02	-94,565	0,001	-209,819	0,001	373,591	0,001	438,79	0,002	00:16:50	10	1,2
93178 - MA01	-759,319	0,002	-1050,539	0,003	615,251	0,002	1434,828	0,004	00:17:25	8	1,8
93178 - 2720Z	-2555,826	0,006	-2066,282	0,006	-3656,207	0,006	4916,26	0,01	00:50:05	9	1,8
93088 - MR01	3822,523	0,009	5642,533	0,009	-4517,611	0,009	8176,715	0,015	00:41:25	- 11	1,5
93088 - 335Im	4098,102	0,009	5752,689	0,009	-3729,295	0,009	7987,21	0,015	00:41:25	9	1,7
MR01 - MA07	-736,668	0,002	-781,54	0,003	-279,004	0,002	1109,652	0,004	00:22:05	7	2
MR01 - 2721Em	213,751	0,002	408,009	0,002	-615,952	0,001	769,128	0,003	00:53:00	10	1,4
MR01 - 335Im	275,582	0,002	110,15	0,002	788,315	0,002	842,329	0,003	00:46:25	9	1,8
MR01 - MR03	-602,104	0,003	-627,099	0,003	-267,492	0,002	909,579	0,004	00:17:05	8	1,8
MR01 - MR05	1267,139	0,003	1498,088	0,003	-40,353	0,003	1962,534	0,005	00:15:10	9	1,4
MR01 - MR04	554,347	0,002	605,757	0,002	204,914	0,002	846,305	0,003	00:23:50	10	1,2
2721Em - MR05	1053,383	0,003	1090,083	0,003	575,6	0,002	1621,485	0,005	00:15:10	8	1,7
2721Em - MR04	340,6	0,002	197,748	0,002	820,866	0,002	910,458	0,004	00:16:40	9	1,3
MA07 - MR03	134,565	0,001	154,439	0,002	11,513	0,001	205,163	0,002	00:16:55	7	2
93089 - 2720T	-2070,224	0,006	-1310,2	0,006	-4416,625	0,006	5050,646	0,01	00:48:55	10	1,9
93089 - 2720X	1096,456	0,004	712,351	0,003	2238,665	0,003	2592,543	0,006	00:21:00	8	2
MR01 - 2721Fm	49,389	0,001	-59,997	0,002	445,166	0,002	451,897	0,003	00:22:45	6	2,4
2720T - 2720X	3166,671	0,008	2022,549	0,008	6655,29	0,008	7642,735	0,014	00:21:00	9	1,3

Tabela 03- Valores extraídos da tabela de vetores gerada pelo programa computacional de pósprocessamento de observações GPS Ashtech Solutions 2.7.

Site Positions PetroJua2307_ajustado - Parte 01


	Coordinate System: Univ. Transverse Merc. (S)Date: 08/28/07
Height Sys	stem: Alt. Elips. Project file: PetroJua2307_ajustado.spr prizontal Accuracy: 0.020m + 1ppm
	ertical Accuracy: 0.040m + 2ppm
Confidence	
	ts of measure: metros
Linear Oni	is of measure, metros
Site	Padrão Fix Position
ID	Site Descriptor Position Error Status Status
	•
1 MA06	MA06 East. 326135.999 0.015 Ajustado
	Nrth. 8953310.568 0.019
	Elev. 349.595 0.033
2 MR02	MR02 East. 326030.489 0.015 Ajustado
	Nrth. 8953319.036 0.018
	Elev. 351.506 0.032
3 AERO	SAT93088 East. 328123.349 0.006 Fixo Ajustado
	Nrth. 8964408.330 0.002 Fixo
	Elev. 370.510 0.014 Fixo
4 MR01	MR01 East. 334915.334 0.008 Ajustado
	Nrth. 8959857.095 0.009
	Elev. 355.571 0.015
5 BA21	SAT93089 East. 330442.056 0.007 Fixo Ajustado
	Nrth. 8952793.368 0.003 Fixo
	Elev. 361.040 0.018 Fixo
6 MA04	MA04 East. 327457.061 0.017 Ajustado
0 MA04	Nrth. 8952853.032 0.020
	Elev. 352.082 0.036
	EICV. 332.002 0.030

Mapeamento Detalhado

Modelo Geoidal Local

Fonte: software MAPGEO2010, 2012.

Por uma aproximação já bastante utilizada por convenção, a ondulação geoidal pode ser definida como (MONICO, 2000):

$$H = h - N \tag{2}$$

Onde:

N: Ondulação geoidal

h: Altitude geométrica ou elipsoidal (obtida nos levantamentos GPS)

H: Altitude ortométrica (realidade física, vinculadas ao campo de gravidade da

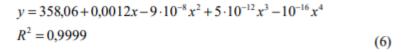
Terra)

	Ponto	E _{UTM}	N_{UTM}	h	dh	Н	N _{Local}
	Aeroporto - SAT93088	328.123,349	8.964.408,330	370,510	0,014	383,774	-13,264
	Catedral - RN335Im	335.174,610	8.960.658,389	362,917	0,017	376,098	-13,181
GCP	2720T	328.120,864	8.948.308,288	378,078	0,033	391,47	-13,392
	Matriz - RN2721Em	335.367,027	8.959.234,685	355,201	0,014	368,363	-13,162
	BA210 - SAT93089	330.442,056	8.952.793,368	361,040	0,018	374,369	-13,329
	2720Z	333.775,782	8.954.866,227	357,789	0,021	371,029	-13,240
Ð	2720X	331.685,911	8.955.067,733	358,334	0,021	371,660	-13,326
C	MR01	334.915,334	8.959.857,095	355,571	0,015	368,759	-13,188
	PonteSF - RN2721Fm	334.899,855	8.960.308,666	358,321	0,018	371,477	-13,156

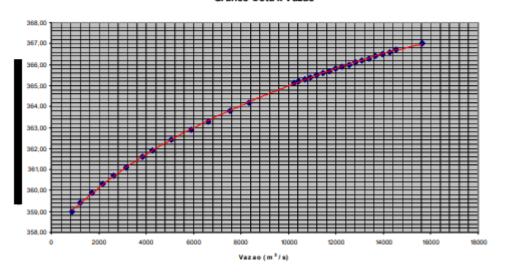
Tabela 06 - Valores utilizados no cálculo do modelo geoidal local

Mapeamento Detalhado

Modelo Geoidal Local e Curva Cota Vazão


IND	PONTO	DESCRIÇÃO	E_{UTM}	dE(m)	N _{UTM}	dN(m)	h(m)	dh(m)	H(m)
1	MA01	MA01	335.696,081	0,006	8.959.203,459	0,008	354,483	0,015	367,653
2	MA02	MA02	336.768,003	0,003	8.958.963,047	0,004	354,201	0,006	367,353
3	MA03	MA03	338.111,000	0,006	8.957.627,971	0,007	354,165	0,014	367,304
4	MA04	MA04	327.457,061	0,017	8.952.853,032	0,020	352,082	0,036	365,456
5	MA05	MA05	327.443,737	0,016	8.952.885,981	0,021	349,002	0,037	362,376
6	MA06	MA06	326.135,999	0,015	8.953.310,568	0,019	349,595	0,033	362,989
7	MA07	MA07	333.843,966	0,010	8.959.568,686	0,011	349,432	0,019	362,633
8	MA08	MA08	334.532,053	0,009	8.959.574,339	0,010	348,838	0,019	362,026
9	MR01	MR01	334.915,334	0,008	8.959.857,095	0,009	355,571	0,015	368,759
10	MR02	MR02	326.030,489	0,015	8.953.319,036	0,018	351,506	0,032	364,902
11	MR03	MR03	334.048,721	0,009	8.959.581,251	0,011	349,505	0,019	362,702
12	MR04	MR04	335.734,988	0,008	8.960.067,337	0,010	349,839	0,016	363,001
13	MR05	MR05	336.877,356	0,009	8.959.824,158	0,011	353,102	0,019	366,245
14	2720T	RN2720T	328.120,864	0,014	8.948.308,288	0,019	378,078	0,033	391,470
15	2720X	RN2720X	331.685,911	0,011	8.955.067,733	0,012	358,334	0,021	371,660
16	2720Z	RN2720Z	333.775,782	0,011	8.954.866,227	0,014	357,789	0,021	371,030
17	Matriz	RN2721Em	335.367,027	0,006	8.959.234,685	0,008	355,201	0,014	368,363
18	PonteSF	RN2721Fm	334.899,855	0,009	8.960.308,666	0,011	358,321	0,018	371,477
19	Catedral	RN335Im	335.174,610	0,009	8.960.658,389	0,011	362,934	0,017	376,098
20	Aeroporto	SAT93088	328.123,349	0,006	8.964.408,330	0,002	370,510	0,014	383,774
21	BA-210	SAT93089	330.442,056	0,007	8.952.793,368	0,003	361,040	0,018	374,369
22	UNEB	SAT93178	336.990,562	0,002	8.958.584,958	0,002	351,890	0,014	365,042

OBS.: Coordenadas UTM referentes ao fuso 24


Sistema Geodésico SIRGAS2000 (Geocêntrico compatível com o WGS-84)

Datum de Referência Vertical Imbituba - SC (IBGE)

Tabelas 08 - Coordenadas Tridimensionais das Estações da Rede Geodésica Implantada

Gráfico Cota x Vazão

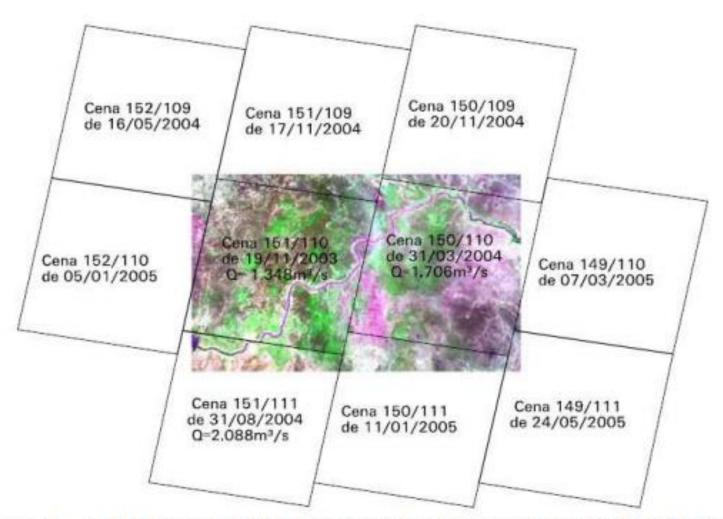
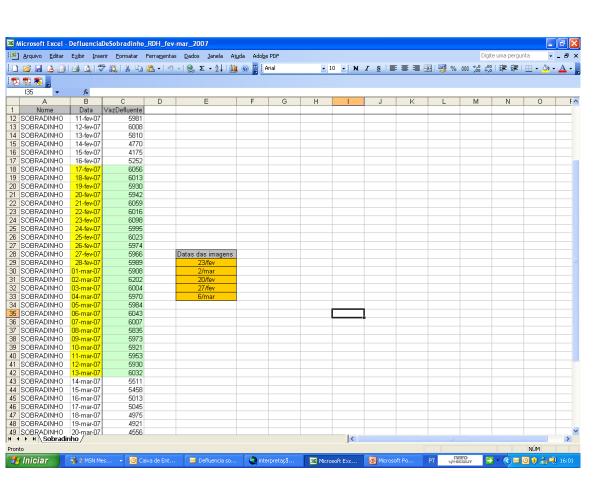
Varia (mNs)	ALTITUDES					
Vazão (m³/s)	Cota IBGE / Altitude Ortométrica H(m)	Cota (m) da Régua do Posto de Juazeiro				
2.000	360,1	2,1				
4.000	361,7	3,7				
6.000	362,9	4,9				
8.000	364,0	6,0				
10.000	365,0	7,0				

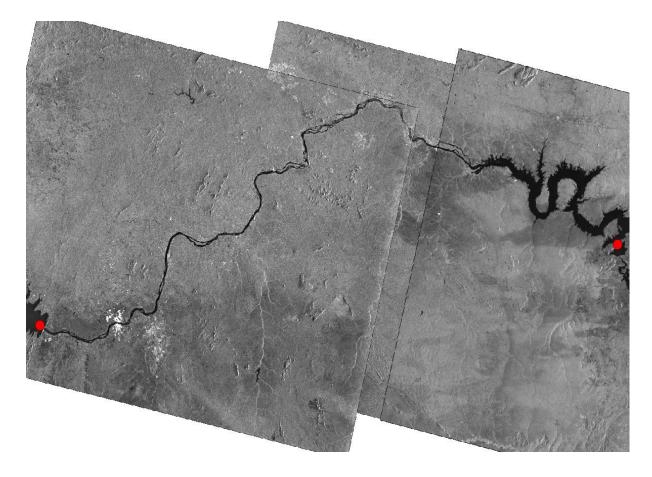
Tabela 09 - Relação COTA X VAZÃO do Posto Hidrométrico de Juazeiro.

Mapeamento Detalhado

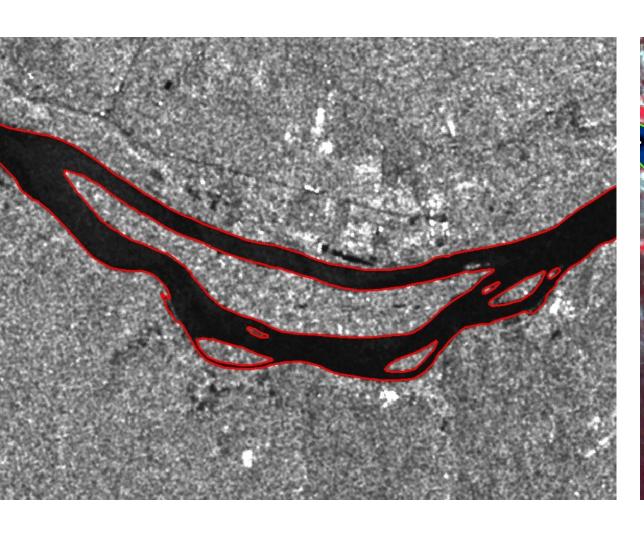
Figura 03 - Imagem do Satélite QUICKBIRD adquirida pela CHESF

Mapeamento Regionalizado


Figura 01 – Grade das cenas do Satélite CBERS-2/CCD utilizadas no Mapeamento da linha d'água de 2.000 m³/s e no Estudo do Uso do Solo.

Mapeamento Regionalizado



Mapeamento Regionalizado

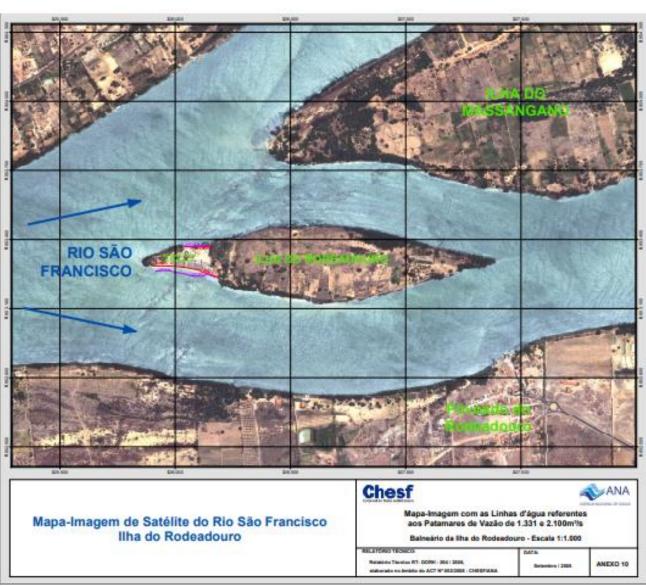
Ilha do Rodeadouro (Levantamento Detalhado)

Foto 01— Situação do Balneário da Ilha do Rodeadouro no dia 03/02/07, com defluência média diária da Usina de Sobradinho de 4.446 m³/s.

Foto 02 — Situação do Balneário da ilha do Rodeadouro no dia 22/02/05, com defluência média diária da Usina de Sobradinho de 3.023 m³/s

Ilha do Rodeadouro (Levantamento Detalhado)

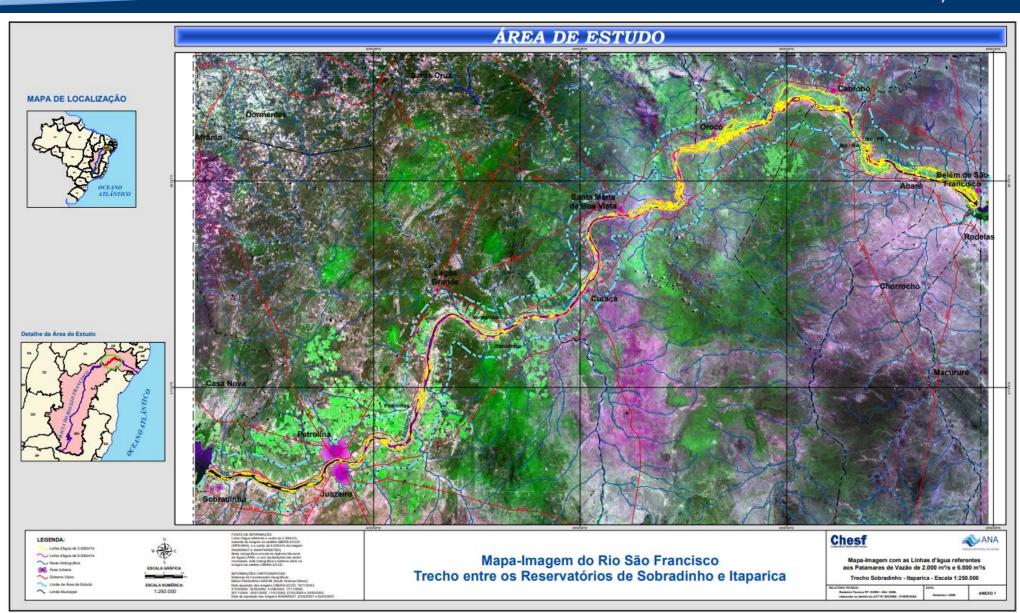
Foto 03- Situação do Balneário da Ilha do Rodeadouro no dia 13/04/04, com defluência


Foto 04 – Situação do Balneário da Ilha do Rodeadouro no dia 14/04/04, com defluência média diária da Usina de Sobradinho de 1.796 m³/s

Mapa-Imagem de Satélite do Rio São Francisco Ilha do Rodeadouro (Levantamento Detalhado)

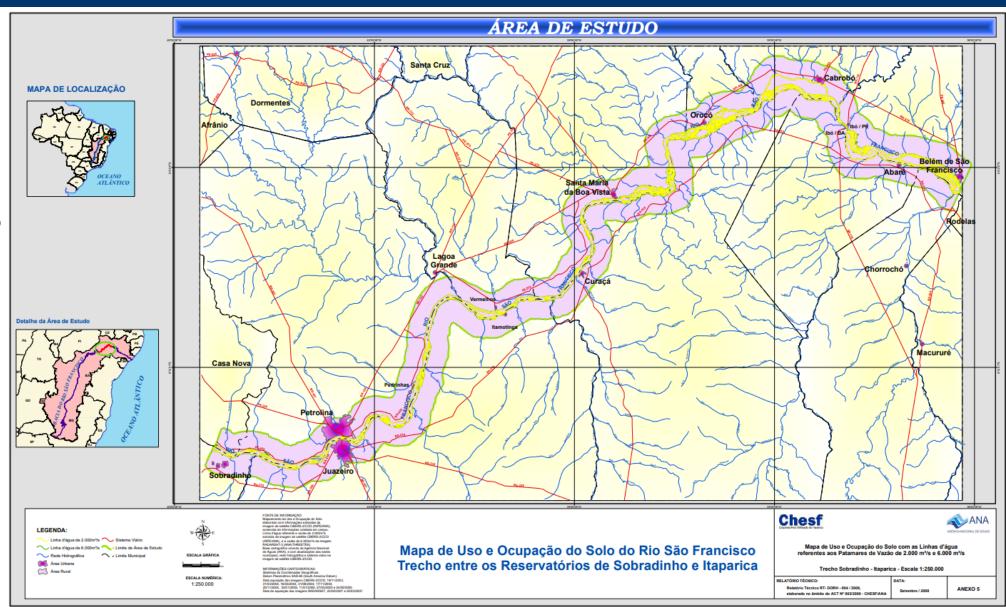
Levantamento Detalhado

Mapa-Imagem de Satélite do Rio São Francisco Orla de Petrolina/PE e Juazeiro/BA



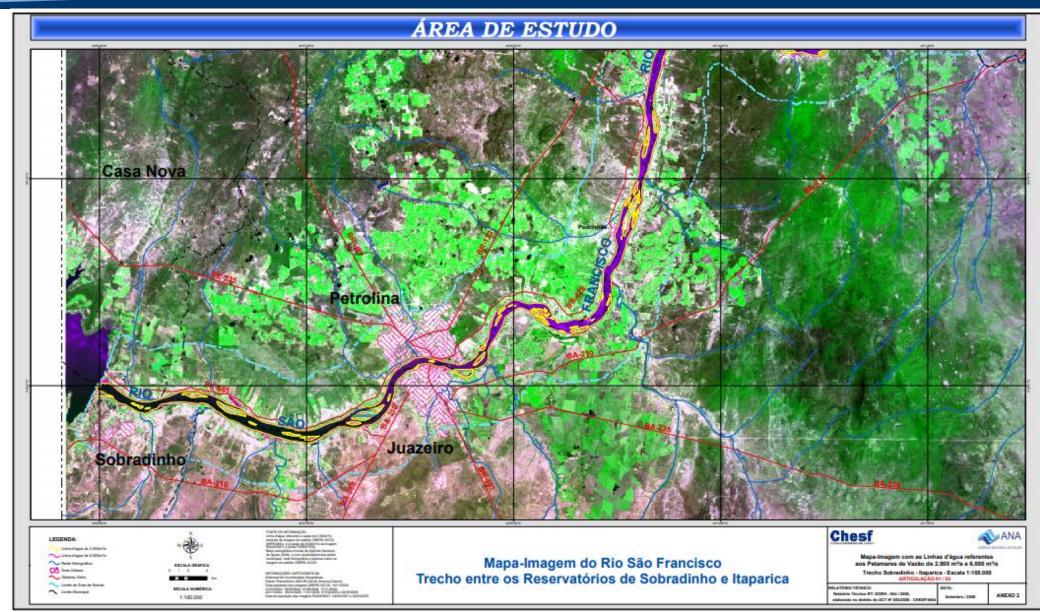
Levantamento Regionalizado

Mapa-Imagem do Rio São Francisco Trecho entre os Reservatórios de Sobradinho e Itaparica



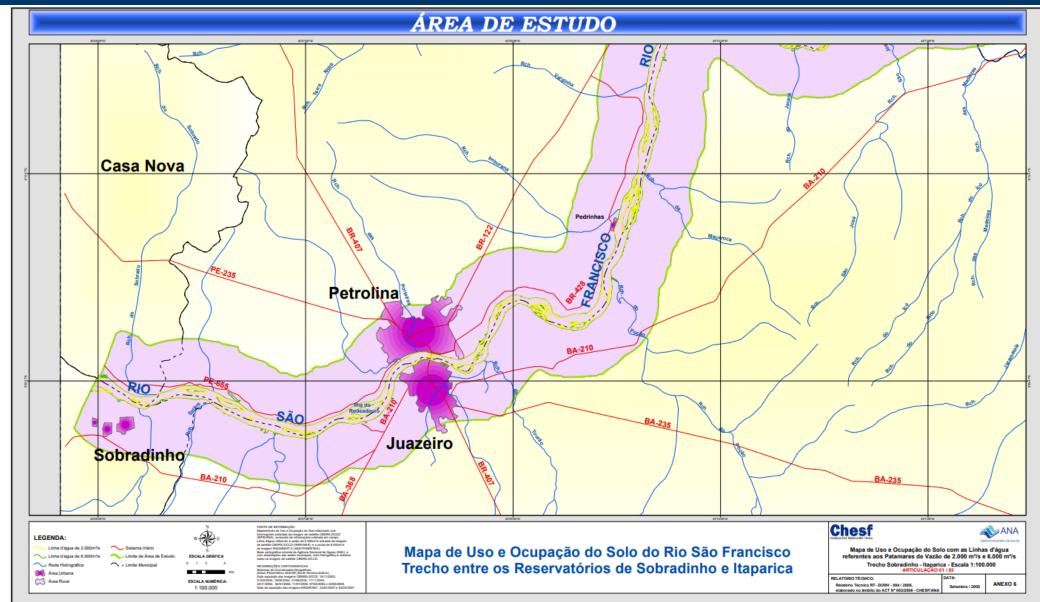
Levantamento Regionalizado

Mapa de Uso e
Ocupação do Solo
do Rio São Francisco
Trecho entre os
Reservatórios de
Sobradinho e
Itaparica



Levantamento Regionalizado

Mapa-Imagem do Rio São Francisco Trecho entre os Reservatórios de Sobradinho e Itaparica (01/03)

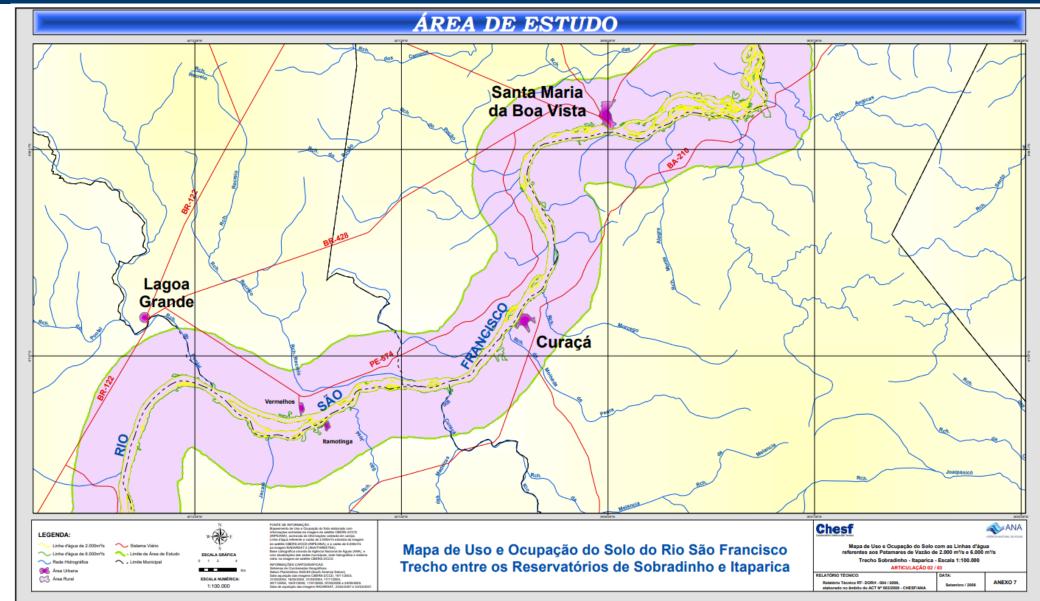


Levantamento Regionalizado

Mapa de Uso e
Ocupação do
Solo do Rio São
Francisco Trecho
entre os
Reservatórios de
Sobradinho e
Itaparica (01/03)

Levantamento Regionalizado

Mapa-Imagem
do Rio São
Francisco Trecho
entre os
Reservatórios de
Sobradinho e
Itaparica (02/03)



Levantamento Regionalizado

Mapa de Uso e
Ocupação do
Solo do Rio São
Francisco Trecho
entre os
Reservatórios de
Sobradinho e
Itaparica (02/03)

Levantamento Regionalizado

Mapa-Imagem
do Rio São
Francisco
Trecho entre os
Reservatórios de
Sobradinho e
Itaparica (03/03)

Levantamento Regionalizado

Mapa de Uso e
Ocupação do
Solo do Rio São
Francisco Trecho
entre os
Reservatórios de
Sobradinho e
Itaparica (03/03)

Levantamento Detalhado (localidades)

Segundo o estudo realizado, a primeira residência do Angary começa a ser inundada, em virtude de sua indevida localização, com vazões da ordem de 4.100 m³/s, conforme Figura 04 abaixo.

Figura 04- Primeira residência do Angary alcançada pela linha da cota 361,75 m, correspondente à vazão de 4.106 m³/s, sobre imagem do satélite QUICKBIRD.

Também foi constatado que, a quadra poliesportiva, pertencente ao Condomínio do Edifício *Champs Elysees*, imediatamente a jusante do Angary, está localizada dentro da calha secundária do rio, estando sujeita a inundações a partir de vazões de aproximadamente 3.600 m³/s, correspondente à cota de 361,44 m, referenciada ao IBGE, como mostrado na **Figura 05** e na **Foto 05**.

Figura 05 – Linha d'água referente à cota de 361,44 m, correspondente à vazão de 3.600 m³/s, sobre imagem do satélite QUICKBIRD.

Foto 05 – Situação da quadra poliesportiva, pertencente ao Condomínio do Edificio *Champs Elysees* no dia 04/02/2007, com vazão média diária de 4.984 m³/s, registrada pelo posto hidrométrico de Juazeiro – BA.

Levantamento Detalhado (localidades)

Quanto à orla fluvial de Juazeiro, entre a Capitania dos Portos e a Ponte Presidente Dutra, a pista de *cooper* começa a ser inundada a partir da cota 361,10 m, que corresponde à vazão de 3.164 m³/s, conforme **Figura 06**. O campo de futebol sofre inundação completa de sua área com vazões a partir de 6.000 m³/s. As **Fotos 06** e **07**, abaixo, mostram a orla fluvial de Juazeiro com vazões superiores a 6.000 m³/s.

Figura 06 – Linha d'água referente à cota de 361,10 m, correspondente à vazão de 3.164 m³/s, sobre imagem do satélite QUICKBIRD.

Foto 06 – Situação da orla fluvial no dia 09/02/2007, com vazão média diária de 6.083 m³/s, registrada pelo posto hidrométrico de Juazeiro – BA.

Foto 07 – Situação da orla fluvial no dia 10/02/2007, com vazão média diária de 6.285 m³/s, registrada pelo posto hidrométrico de Juazeiro – BA.

Acervo Fotográfico (localidades)

É importante observar a possibilidade da ocorrência de refluxo do esgoto e galerias pluviais que despejam no Rio São Francisco (para patamares de vazão superiores a 8.000 m³/s na cidade de Juazeiro) e a vulnerabilidade da captação fixa do SAAE em Juazeiro, para defluências de Sobradinho superiores a 5.500 m³/s, conforme registrado no período úmido 2006/2007 e mostrado pela Foto 08.

Foto 08 – Situação da captação fixa do SAEE no dia 07/02/2007, com vazão média diária de 5.518 m³/s, registrada pelo posto hidrométrico de Juazeiro - BA.

Acervo Fotográfico (localidades)

Foto 09 – Situação da orla fluvial de Petrolina – PE, no dia 30/01/08, com vazão média diária de 1.248 m³/s, registrada pelo posto hidrométrico de Juazeiro – BA.

Foto 10 – Situação orla fluvial de Petrolina – PE, no dia 09/02/07, com vazão média diária de 6.083 m³/s, registrada pelo posto hidrométrico de Juazeiro – BA.

Acervo Fotográfico (localidades)

Foto 11 – Situação do Hotel de Trânsito de Oficiais em Petrolina – PE, no dia 03/02/07, com vazão média diária de 4.696 m³/s, registrada pelo posto hidrométrico de Juazeiro – BA.

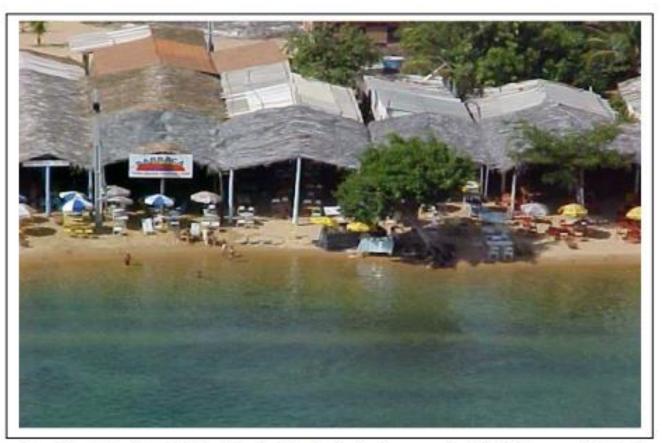
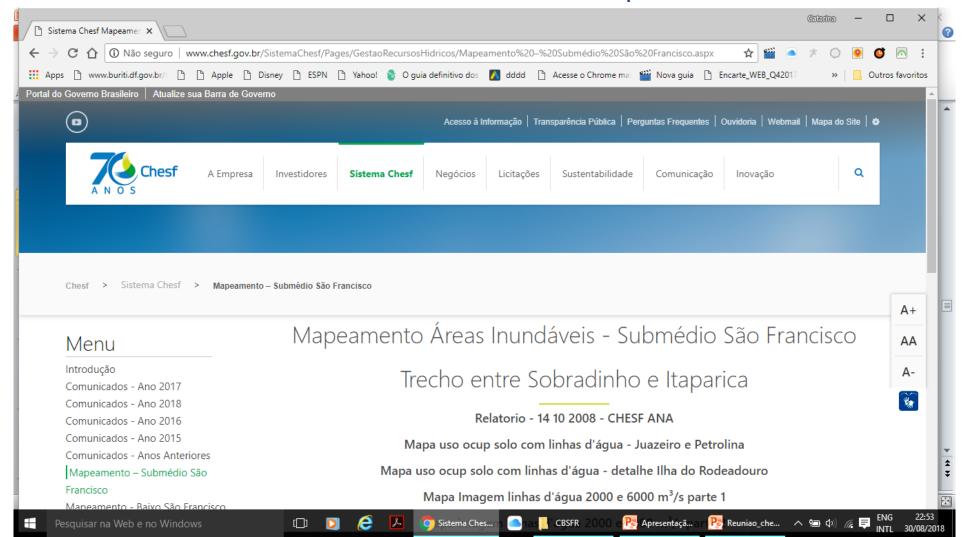
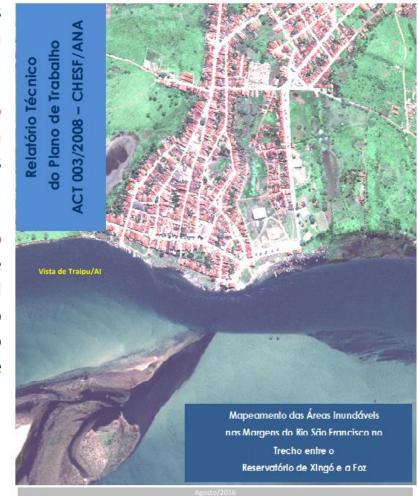


Foto 12 – Situação do Balneário da Ilha do Rodeadouro no dia 28/10/05, com defluência média diária da Usina de Sobradinho 2.267 m³/s.


Recomendações

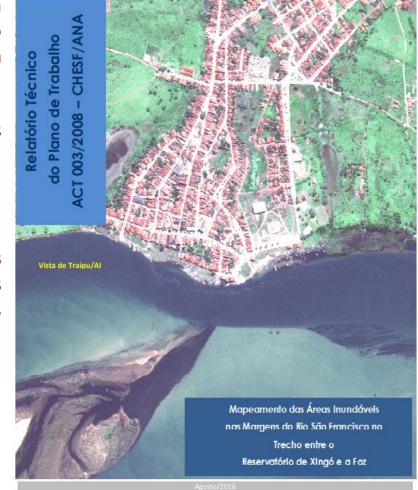
- Monitorar as áreas urbanas ribeirinhas para garantir o cumprimento dos Planos Diretores;
- Relocar as ocupações ilegais existentes nas margens e leito do rio;
- Melhorar as condições operacionais das captações de água bruta do SAAE em Juazeiro BA, adequandoas para os níveis de vazão a partir de 6.000 m³/s;
- Melhorar o sistema de esgotamento sanitário e águas pluviais das áreas urbanas das cidades de Petrolina e Juazeiro, no sentido de evitar o refluxo gerado pelo barramento dessas águas pelo rio, quando da ocorrência de vazões iguais ou superiores a 6.000 m³/s;
- Disseminar os informativos da CHESF, principalmente aqueles relativos à operação dos reservatórios durantes os períodos úmidos.

http://www.chesf.gov.br/SistemaChesf/Pages/GestaoRecursosHidricos/Mapeamento%20%E2%80%93%20Subm%C3%A9dio%20S%C3%A3o%20Francisco.aspx



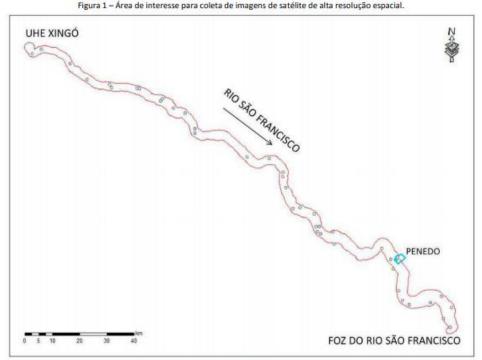
Apresentação

- As elevações periódicas de vazão, que provocam o extravasamento das águas da calha principal do rio para suas áreas marginais, e a ocupação intensa e desordenada das várzeas inundáveis, geraram a necessidade de um conhecimento detalhado e espacializado da planície de inundação do Rio São Francisco no trecho entre a Usina de Xingó e a foz.
- Esse projeto é de interesse da sociedade ribeirinha do Vale do São Francisco, e atende ao Acordo de Cooperação Técnica, ACT 003/2008, firmado entre a Companhia Hidro Elétrica do São Francisco (CHESF) e a Agência Nacional de Águas (ANA). Tendo sido utilizadas as orientações metodológicas e os produtos resultantes do citado ACT.
- o projeto tem como objetivo mapear a área ribeirinha e a dinâmica fluvial do Rio São Francisco, trecho Baixo, do Reservatório de Xingó até a Foz do rio, com uso de técnicas de geoprocessamento, processamento digital de imagens de satélite de alta resolução espacial e topografia de precisão. Este relatório técnico apresenta as atividades desenvolvidas no âmbito do Projeto Básico de Mapeamento das Áreas Inundáveis nas Margens do Rio São Francisco, a Jusante do Reservatório de Xingó até a Foz, limitado a uma faixa de aproximadamente 5 km paralela ao eixo do rio.



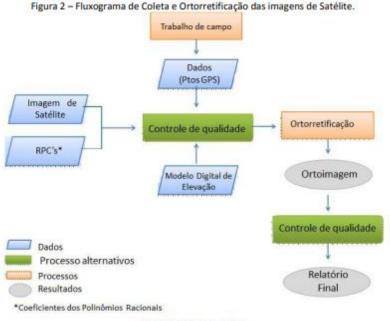
Apresentação

- O mapeamento foi priorizado considerando as localidades situadas no Baixo São Francisco que possuem postos hidrométricos com Curvas Cota x Vazão, com exceção da Praia da Adutora (Balneário de Telha-SE), que se encontra próxima ao posto hidrométrico instalado em Propriá-SE: Piranhas (AL); Pão de Açúcar (AL); Traipu (AL); Propriá (SE); Praia da Adutora (Balneário de Telha - SE).
- Foram produzidas cartas imagem das áreas definidas, com isolinhas correspondentes as vazões de: 2.000, 4.000, 6.000 e 8.000 m³/s, plotadas sobre a imagem de forma que possa representar o limite que cada vazão alcança dentro da localidade.
- Os resultados desse trabalho subsidiarão a adoção de medidas não estruturais preventivas e mitigadoras para melhorar a convivência da população com o rio, haja vista que seus principais produtos são mapas com a visão espacial da região estudada e o alcance das linhas d'água para as vazões de 2.000, 4.000, 6.000 e 8.000 m³/s.



Metodologia

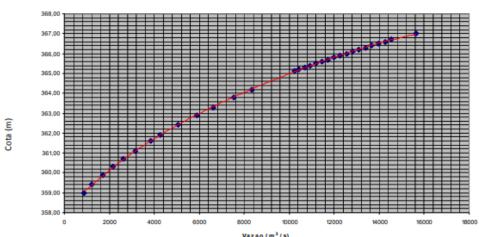
Foram adquiridas imagens do satélite WorldView-2, de resolução espacial de 0,5 metros, complementadas por imagens do sensor QuickBird, de resolução espacial de 0,6 metros, devido às condições meteorológicas desfavoráveis, que apresentou constante cobertura de nuvens na região imageada. Isso objetivou aumentar as chances de sucesso de coleta de informações de imagens de satélite da região em estudo.


Fonte: GEOPIXEL, 2013.

Metodologia

- Os pontos de controle foram coletados com GPS L1/L2, utilizando o método de posicionamento relativo estático com levantamento de duração de 20 a 30 minutos para cada ponto. As bases utilizadas fazem parte da RBMC (Rede Brasileira de Monitoramento Contínuo), localizadas nos municípios de Arapiraca, Petrolina e Salvador. O planejamento de campo foi realizado de forma a atender uma distribuição dos pontos de 5 em 5 km aproximadamente, totalizando cerca de 150 pontos na área de interesse, já considerando nesse montante os pontos para a realização da validação.
- Praticado o fusionamento, ortorreticicação com o SRTM-90m e mosaicagem.

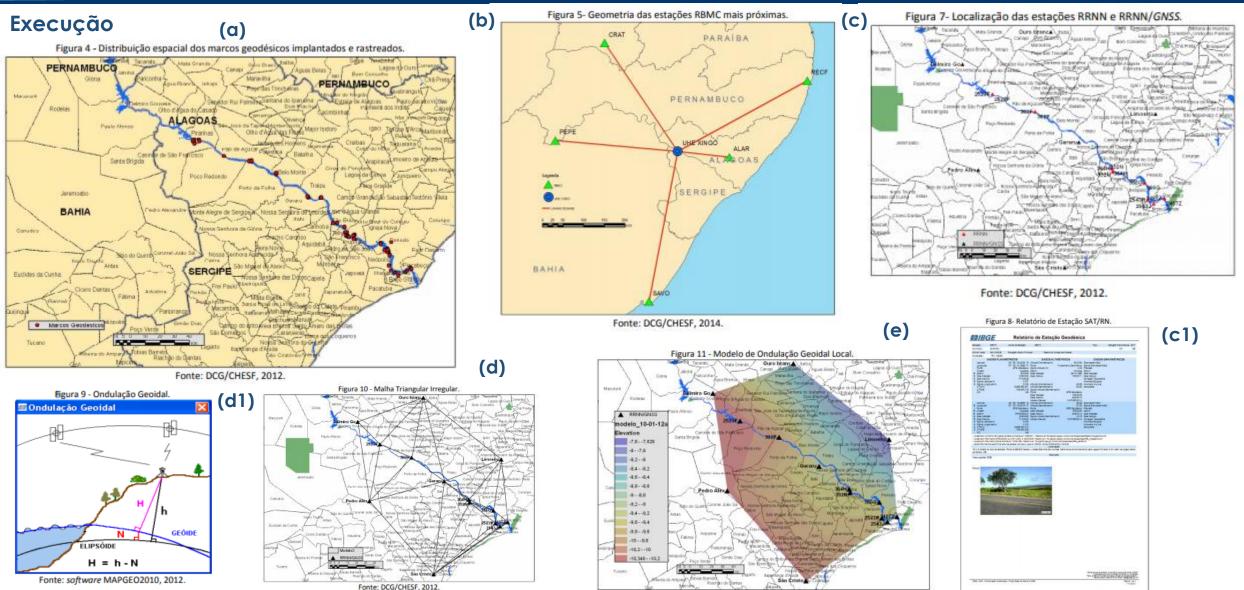
Fonte: GEOPIXEL, 2013.


Metodologia

- Linha d'água de 2.000 m³/s delimitada pelo NA da imagem com data de aquisição compatível com a vazão requerida;
- Para o mapeamento das linhas d'água com defluências de 4.000, 6.000 e 8.000 m³/s foram realizadas interpolações matemáticas dos pontos cotados em campo, gerando assim malhas de pontos tridimensionais de forma a permitir a associação dos valores cotados aos de vazão utilizando para isso tabelas (Curvas) Cota x Vazão existentes dos postos hidrométricos do mapeamento.;
- O arquivo de pontos tridimensionais, adquiridos via Levantamento Topográfico, foi interpolado, utilizando o método da triangulação de pontos, para composição das curvas de nível. Foram então selecionadas e apresentadas as isolinhas das cotas, correspondentes às vazões do N.A. da imagem, 4.000, 6.000 e 8.000 m³/s. A correspondência entre as cotas e as vazões foi baseada na Curva Cota x Vazão dos postos hidrométricos de: Traipu (AL), Propriá (SE), Piranhas (AL) e Pão de Açúcar (AL), conforme tabela 2 abaixo;

Tabela 2 - Correspondência entre as cotas e as vazões baseada na Curva Cota x Vazão dos postos hidrométricos.

Posto Hidrométrico	N.A. Imagem	$Q = 4.000 \text{m}^3/\text{s}$	$Q = 6.000 \text{m}^3/\text{s}$	Q = 8.000m ³ /s	Máxima Ocorrida
Piranhas	Q = 1.770 m ³ /s cota 2,10 m	cota 5,40 m	cota 7,50 m	cota 9,20 m	Q = 13.896 m ³ /s cota 13,40 m
Pão de Açúcar	Q = 1.488 m ³ /s cota 1,33m	cota 4,02 m	cota 5,60 m	cota 6,92 m	Q = 13.637 m ³ /s cota 9.56 m
Traipu	Q = 2.263 m ³ /s cota 2,62m	cota 4,17 m	cota 5,55 m	cota 6,68 m	Q = 13.027 m ³ /s cota 9,22 m
Propriá	Q = 2.137m ³ /s cota 2,00m	cota 3,54 m	cota 4,71 m	cota 5,84 m	Q = 14.750 m ³ /s cota 9,40 m



Fonte: IBGE, 2012.

Fonte: DCG/CHESF, 2012.

ACT - 003/2008 - CHESF/ANA \gg \triangle \triangle \triangle Trecho entre o reservatório de Xingó e a Foz do Rio São Francisco.

Conclusões (Piranhas/AL)

Figura 13 - Área levantada topograficamente entre o posto hidrométrico e a casa do antigo consórcio da construção da Usina de Xingó, Piranhas/AL.

Fonte: GOOGLE EARTH-DORH/CHESF, 2014.

Foto 2 - Campo de futebol do Estádio José Ventura em Piranhas/AL, no dia 02/02/2007, com vazão de 3.699m8/s.

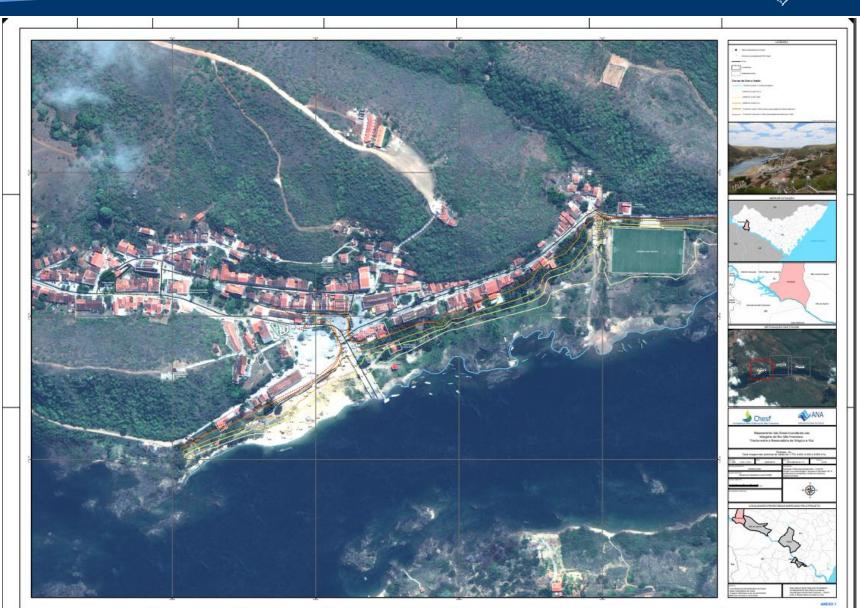
Figura 14 - Articulação de Folhas, Escala 1:1.000, Piranhas/AL

Fonte: DCG/CHESF, 2014.

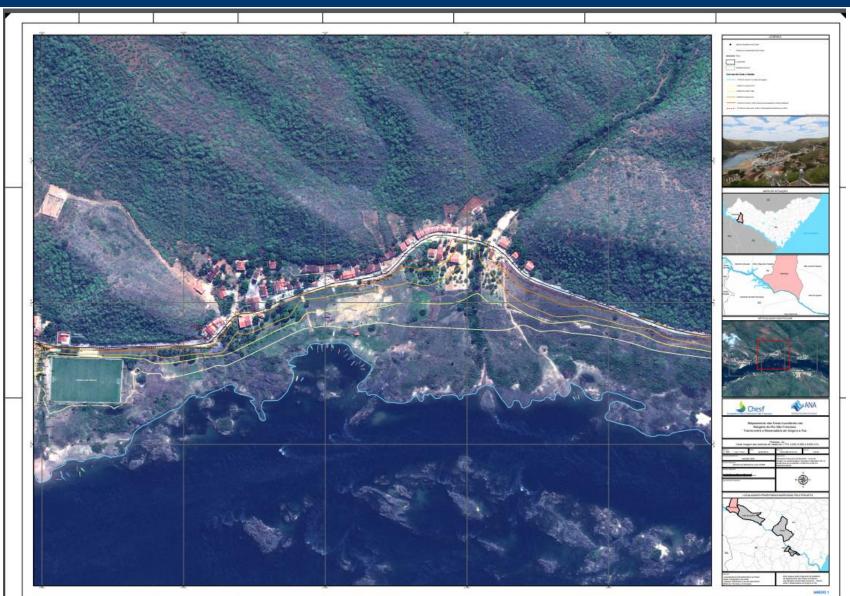
Foto 3 - Casa do antigo consórcio da construção da Usina de Xingó em Piranhas/AL, no dia 10/02/2007, com vazão de 6.235m³/s.

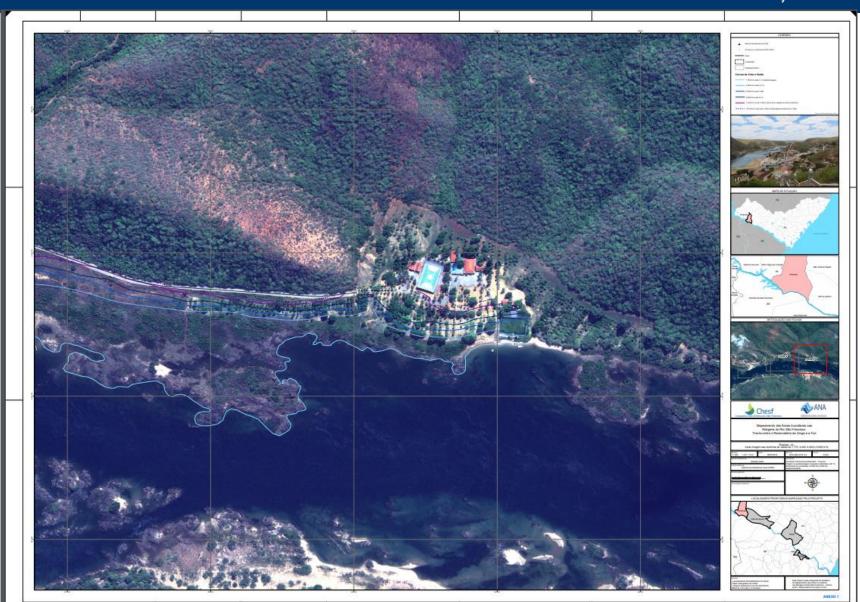
Fonte: Acervo Histórico da DORH/CHESF, 2007.

Fonte: Acervo Histórico da DORH/CHESF, 2007.


Fonte: Acervo Histórico da DORH/CHESF, 2013.

ACT - 003/2008 - CHESF/ANA a Foz do Rio São Francisco.


Piranhas/AL (Carta imagem 01/03)


Piranhas/AL (Carta imagem 02/03)

Piranhas/AL (Carta imagem 03/03)

ACT - 003/2008 - CHESF/ANA \gg \triangle \triangle \triangle Trecho entre o reservatório de Xingó e a Foz do Rio São Francisco.

Conclusões (Pão de Açucar/AL)

Figura 15 - Articulação de Folhas, Escala 1:1.000, Pão de Açúcar/AL.

Fonte: DCG/CHESF, 2014.

Figura 17 - Casas sujeitas a inundação, abaixo da cota da Rua Povoado Campo Alegre, a montante do centro de Pão de

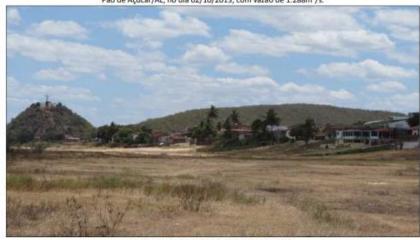
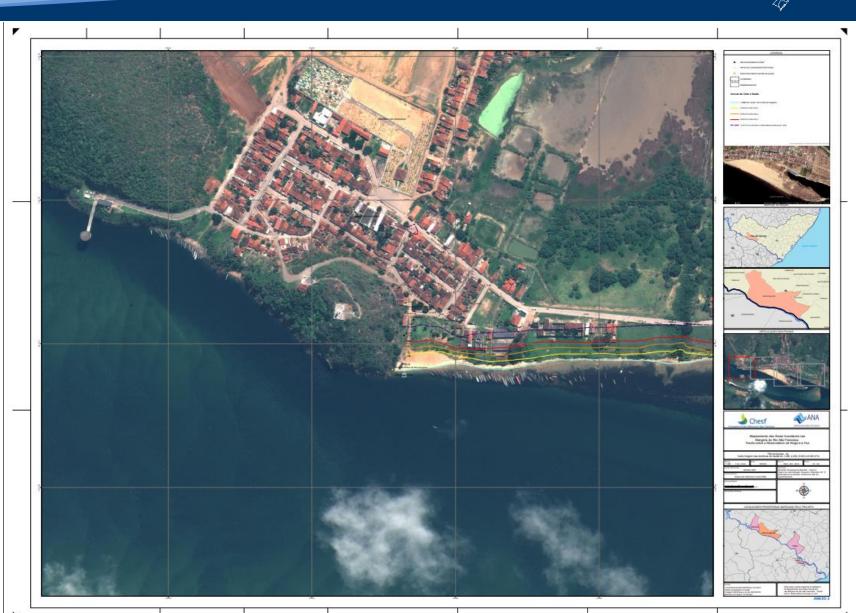

Fonte: GOOGLE EARTH-DORH/CHESF, 2014.

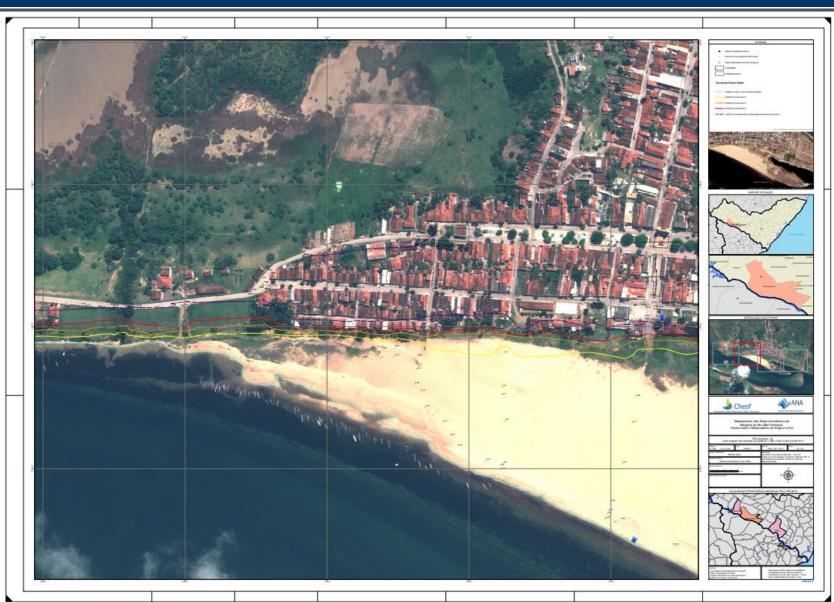
Figura 16- Cabanas de pescadores localizadas dentro da calha do Rio São Francisco, Pão de Açúcar/AL. Entre 4.000 e 6.000 m³/s

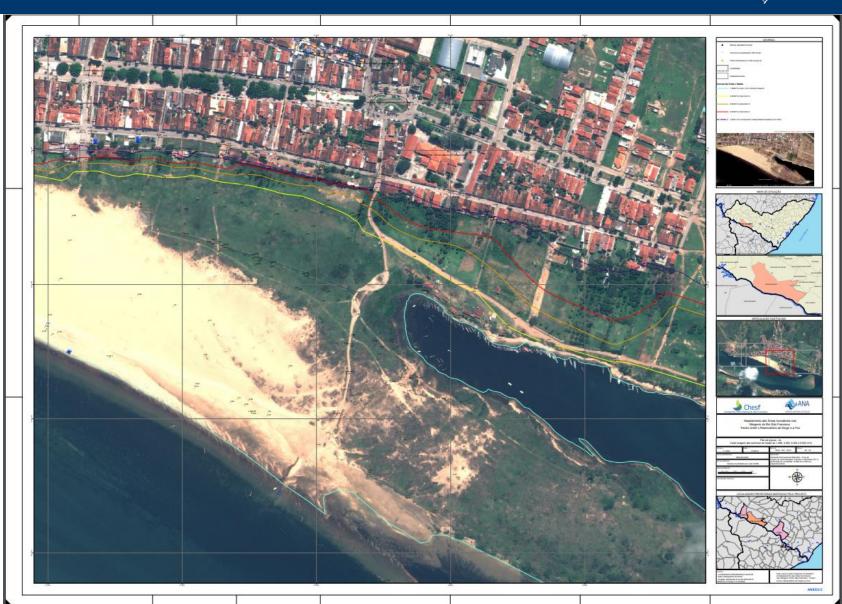
Fonte: GOOGLE EARTH-DORH/CHESF, 2014.

Foto 5- Casas passíveis de Inundação a partir de 4.000 m³/s, abaixo da cota da Rua Povoado Campo Alegre, a montante do centro de Pão de Açúcar/AL, no dia 02/10/2013, com vazão de 1.288m³/s.

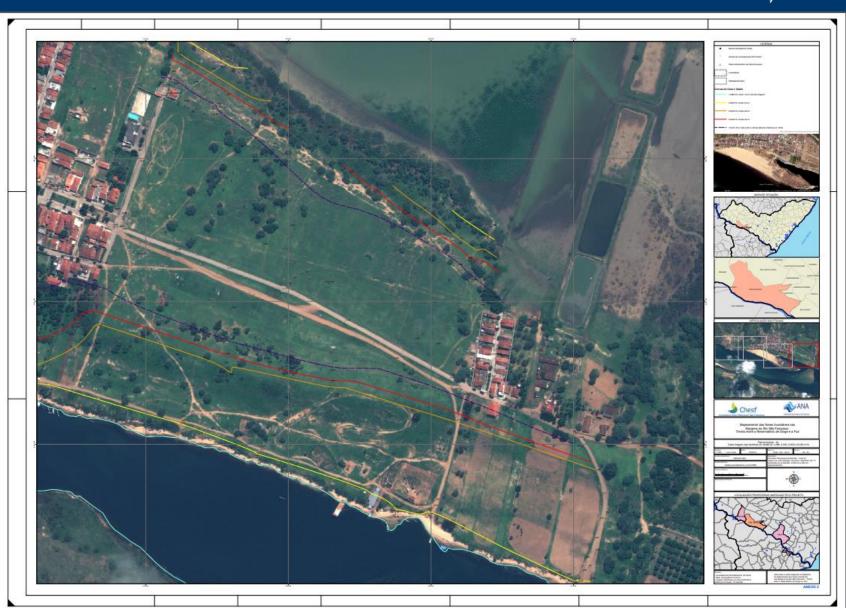


Fonte: Acervo Histórico da DORH/CHESF, 2013.


Pão de Açúcar/AL (Carta imagem 01/04)


Pão de Açúcar/AL (Carta imagem 02/04)

Pão de Açúcar/AL (Carta imagem 03/04)



ACT - 003/2008 - CHESF/ANA a Foz do Rio São Francisco.

Pão de Açúcar/AL (Carta imagem 04/04)

ACT - 003/2008 - CHESF/ANA \gg \triangle \triangle \triangle Trecho entre o reservatório de Xingó e a Foz do Rio São Francisco.

Conclusões (Traipu/AL)

Fonte: DCG/CHESF, 2014. Foto 7 - Ginásio "O Ribeirão" (Traipu/AL), no dia 15/10/2013, com vazão de 1.424 m³/s.

Fonte: Acervo Histórico da DORH/CHESF, 2013.

Fonte: Acervo Histórico da DORH/CHESF, 2007.

Fonte: Acervo Histórico da DORH/CHESF, 2013.

Fonte: Acervo Histórico da DORH/CHESF, 2004.

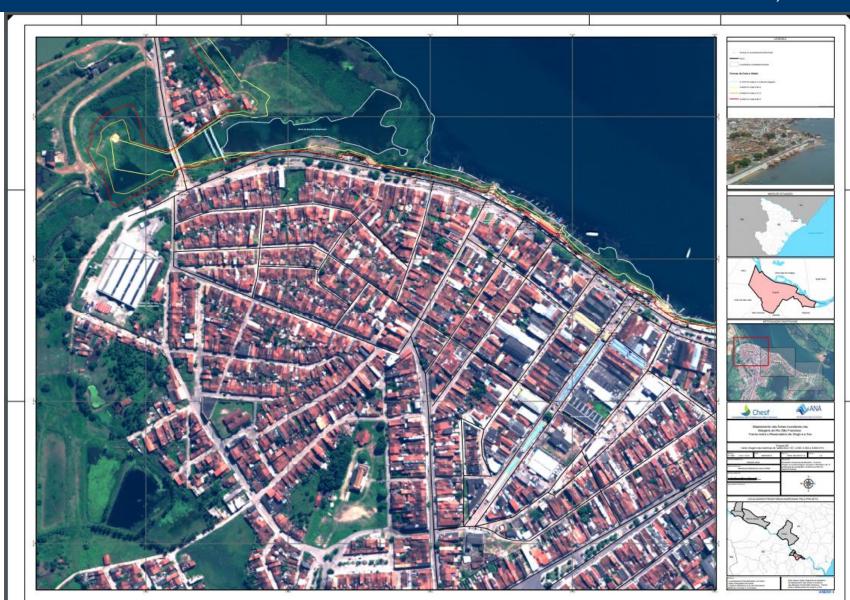
Traipu/AL (Carta imagem 04/04)

ACT - 003/2008 - CHESF/ANA \gg \triangle \triangle \triangle Trecho entre o reservatório de Xingó e a Foz do Rio São Francisco.

Conclusões (Propriá/SE e Praia da Adutora – Balneário de Telha)

Figura 22- Bares sujeitos a inundação, localizados abaixo do cais de Proteção da Cidade de Propriá/SE, delimitados pelo polígono em

Fonte: Acervo Histórico da DORH/CHESF, 2005.



Fonte: GOOGLE EARTH-DORH/CHESF, 2014.

Propriá/SE (Carta imagem 01/03)

Propriá/SE (Carta imagem 02/03)

Propriá/SE (Carta imagem 03/03)

ACT - 003/2008 - CHESF/ANA \gg \triangle \triangle \triangle Trecho entre o reservatório de Xingó e a Foz do Rio São Francisco.

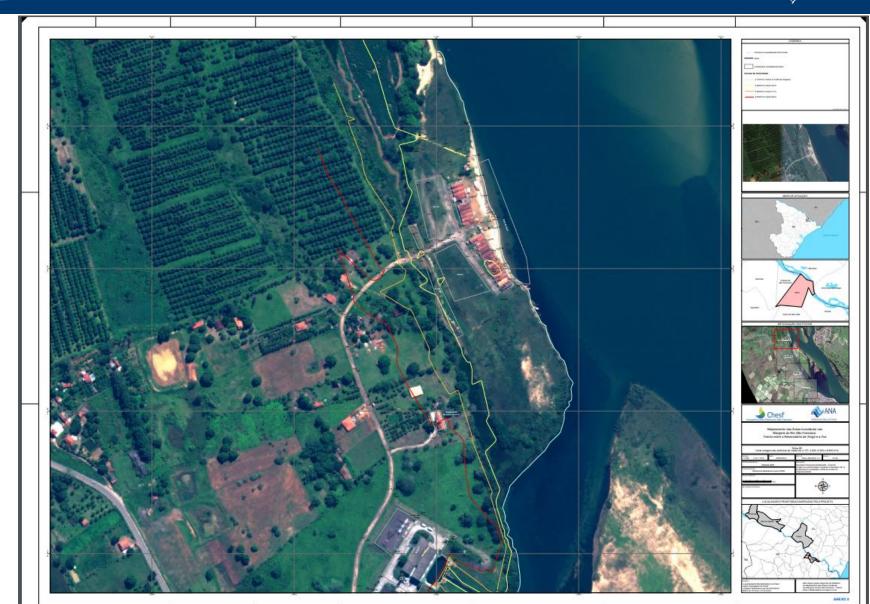
Conclusões (Propriá/SE e Praia da Adutora – Balneário de Telha)

Google earth

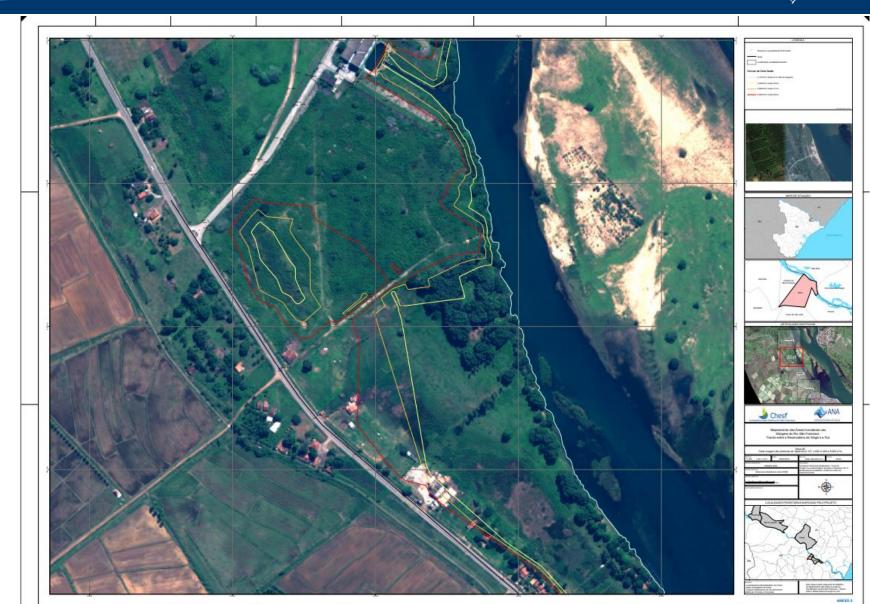
Fonte: GOOGLE EARTH-DORH/CHESF, 2014.

Fonte: Acervo Histórico da DORH/CHESF, 2006. Foto 15 - Foto da Praia da Adutora, Telha/SE, no dia 09/02/2007, com vazão de 6.088 m8/s.

Fonte: Acervo Histórico da DORH/CHESF, 2007.


Foto 14 - Foto da Praia da Adutora, Telha/SE, no dia 03/02/2007, com vazão de 4.014 m³/s

Fonte: Acervo Histórico da DORH/CHESF, 2007.


Praia da Adutora (Balneário de Telha) (Carta imagem 01/04)

Praia da Adutora (Balneário de Telha) (Carta imagem 02/04)

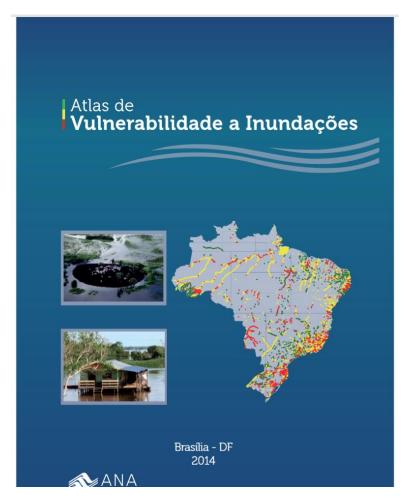
Praia da Adutora (Balneário de Telha) (Carta imagem 03/04)

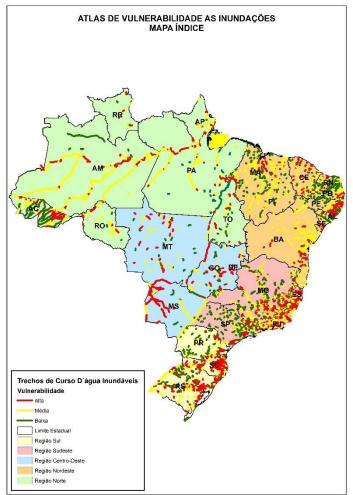
Praia da Adutora (Balneário de Telha) (Carta imagem 04/04)

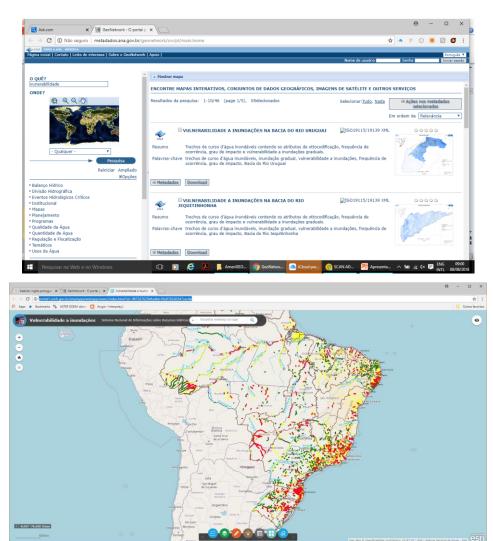

Recomendações

- Os resultados obtidos a partir deste estudo contribuirão para que as Prefeituras possam avaliar como demarcar, ordenar e fiscalizar o uso das áreas onde há risco de inundação. Sendo recomendável o uso do mapeamento das planícies de inundação, anexos do relatório, como subsídio para o direcionamento das expansões urbanas, bem como na elaboração de Planos Diretores dos Municípios, com a definição dos tipos de ocupação adequados para as áreas de maior ou menor risco à inundação;
- O mapeamento é também insumo a ser utilizado, pelo Poder Público, para a elaboração de Planos de Defesa Civil, que estabelecerão ações individuais e coletivas para minimizar os transtornos na época de elevação de vazões durante os períodos úmidos;
- Monitorar as áreas urbanas ribeirinhas para garantir o cumprimento dos Planos Diretores;
- Realocar as ocupações ilegais existentes nas margens e leito do rio;
- Melhorar o sistema de esgotamento sanitário e águas pluviais das áreas urbanas ribeirinhas, no sentido de evitar o refluxo gerado pelo barramento dessas águas pelo rio, quando da ocorrência de vazões iguais ou superiores a 6.000 m³/s;
- Disseminar os informativos da CHESF, principalmente aqueles relativos à operação dos reservatórios durantes os períodos úmidos.

https://www.chesf.gov.br/SistemaChesf/Pages/GestaoRecursosHidricos/Mapeamento%20-%20Baixo%20S%C3%A3o%20Francisco.aspx

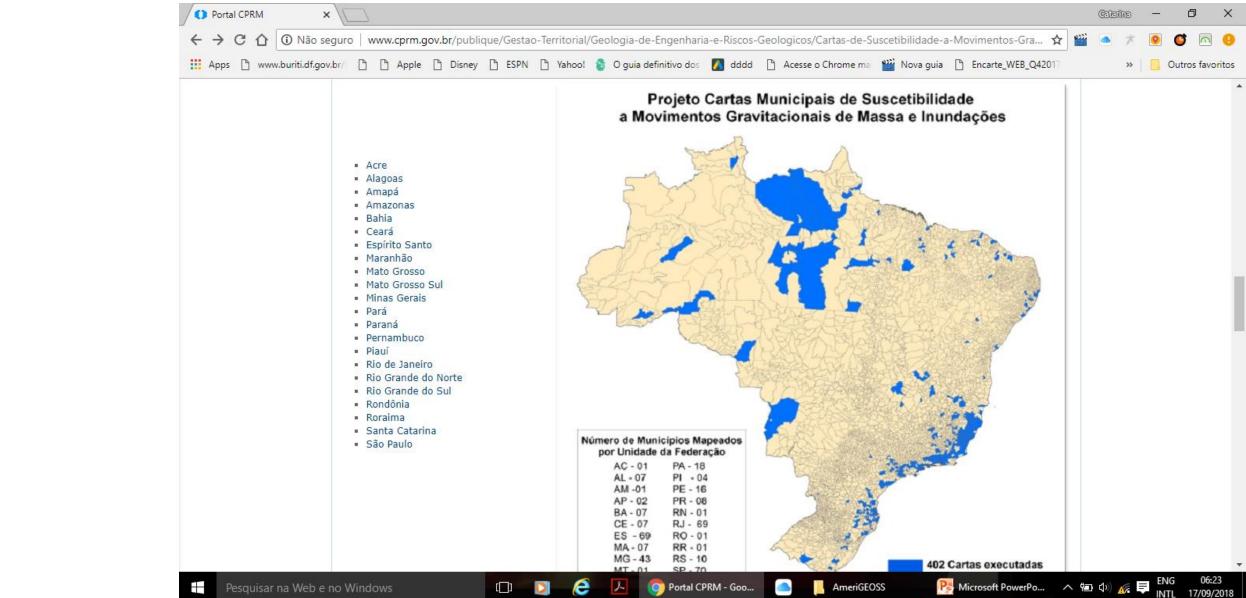



Atlas de Vulnerabilidade a Inundações / Atlas of flood venerability



Atlas de Vulnerabilidade a Inundações (http://portal1.snirh.gov.br/ana/apps/webappviewer/index.html?id=987367629d6a4bb18e876630347cec4a)

PORTAL de METADADOS - http://metadados.ana.gov.br/geonetwork/srv/pt/main.home



Áreas Críticas quanto aos Riscos de Inundações e Deslizamentos (CPRM – Serviço Geológico Brasileiro)

Obrigado!

Geraldo Lucatelli

Especialista em Geoprocessamento Coordenador Substituto de Eventos Críticos (COVEC/SOE/ANA)

geraldo.lucatelli@ana.gov.br (+55)(61) 2109-5517

www.ana.gov.br