

UNIVERSIDADE FEDERAL DA BAHIA – UFBA Grupo de Recursos Hídricos - GRH

RESULTADOS CAMPANHAS DE AMOSTRAGEM (AIHA)

QUALIDADE DE ÁGUA E DE SEDIMENTOS:

Dra. Vânia P. Campos Dr. Doriedson F. Gomes

MACROINVERTEBRADOS BENTÔNICOS:

Dra. Marlene C. Peso-Aguiar

ICTIOFAUNA:

Dr. Alexandre Clistenes

INTRODUÇÃO

O entendimento de efeitos de distúrbios naturais ou de origem antrópica, identificados na qualidade da água, sedimentos, no biomonitoramento e através da amostragem das espécies de peixes e da caracterização de seus requerimentos ecológicos, possibilita inferir sobre a qualidade do ecossistema aquático e também sobre efeitos ecossistêmicos relacionados às modificações do meio, contribuindo para a definição de hidrogramas ambientais.

.

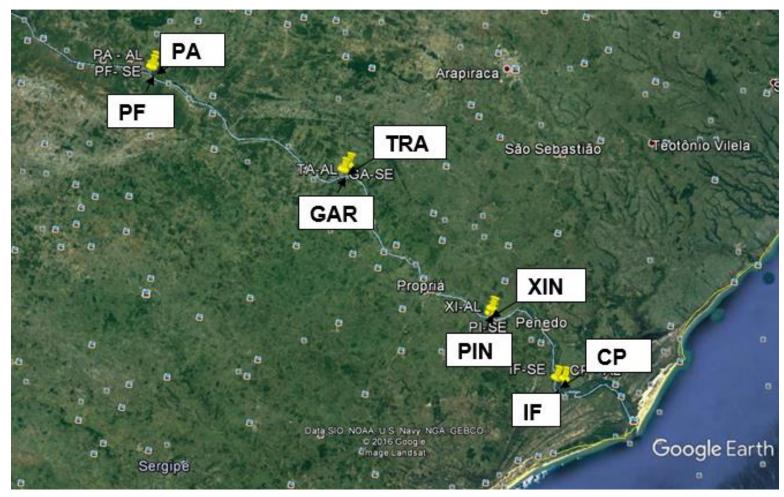
OBJETIVOS

Visando subsidiar os estudos para a implementação do hidrograma ambiental no baixo trecho do Rio São Francisco:

Investigar a qualidade da água e dos sedimentos

Estudar a origem, fontes de matéria orgânica e elementos traço nos sedimentos superficiais

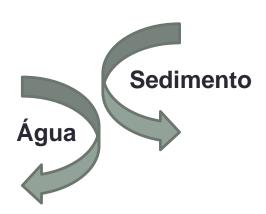
Através da **composição faunística** e suas relações com os parâmetros registrados no **meio aquático investigar**:


- A sensibilidade dos invertebrados bentônicos (zoobentos) quanto às modificações da qualidade da água e à magnitude do fluxo hídrico relacionados ao volume, duração da velocidade e frequência de ocorrência.
- Futuros cenários a serem descritos pelas comunidades de invertebrados

Conhecer a ictiofauna do baixo rio São Francisco qualitativa e quantitativamente, indicando características das espécies em relação aos requerimentos ecológicos indicadores da qualidade ambiental.

PROCEDIMENTO METODOLÓGICO

Estações de amostragem


Pão de Açucar (AL) / Porto da Folha (SE)

Traipu (AL) / Xinaré (AL) / Croa dos Patos (AL) / Gararu (SE) Pindoba (SE) Ilha das Flores (SE)

PROCEDIMENTO METODOLÓGICO (Cont.)

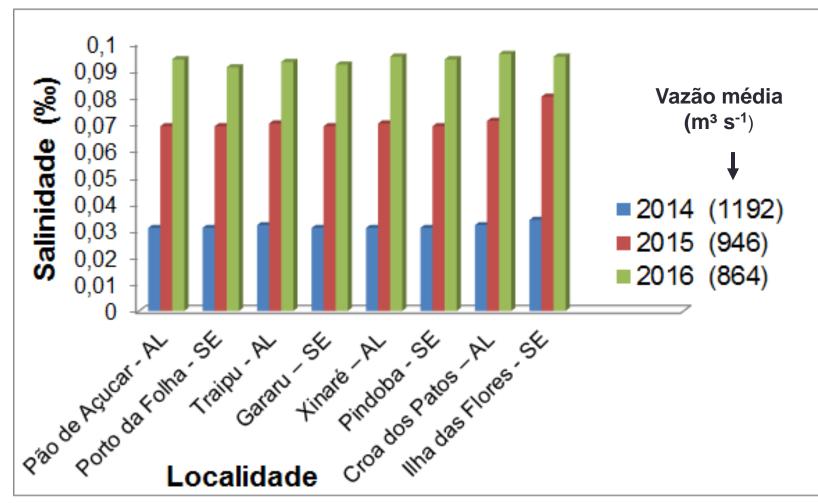
Draga Van Veen

Amostragem de comunidade de macroinvertebrados bentônicos:

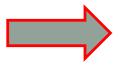
Rede tipo ISSO (Kick net)
- 500 μm

Batimentos ascendentes da vegetação ribeirinha e sob bancos de macrófitas aquáticas, desde o substrato à superfície

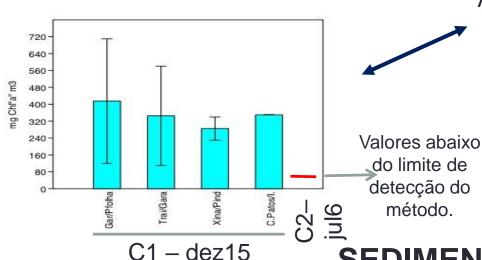
PROCEDIMENTO METODOLÓGICO (Cont.)


Foram utilizados dados primários e secundários obtidos através de duas campanhas de amostragem em cinco localidades do baixo curso, nos períodos seco e chuvoso, bibliografia especializada e material depositado na coleção da Divisão de Peixes do Museu de Zoologia da Universidade Estadual de Feira de Santana (MZFS).

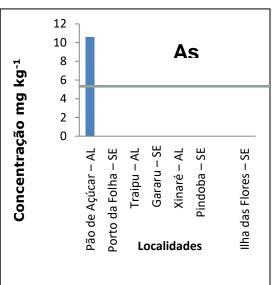
As espécies foram classificadas em ameaçadas, endêmicas, tolerantes, comerciais e introduzidas, e a partir de seus requerimentos ecológicos foram relacionadas características indicadoras da qualidade ambiental da área.

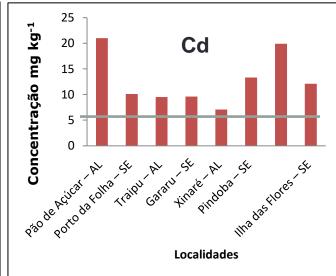


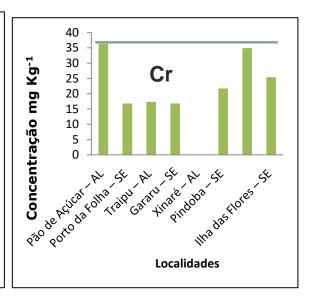
- Esgotos despejados no rio
- Decomposição de fitomassa (vide Clorofila)


Irrigação

PREVISÃO 2019:


ÁGUA PROVAVELMENTE SALOBRA




Aumento da biomassa na água (indicado pelas conc. de clorofila) no período chuvoso pode estar relacionado ao aumento da entrada de nutrientes a partir do escoamento superficial, bem como a maior incidência de radiação solar.

SEDIMENTOS

CONAMA 454/12

Outros elementos traço detec.: Ni, Pb e Zn, principalmente em P. de Açucar e C. dos Patos.

(Cont. Sedimentos)

Parâmetros geoquímicos orgânicos

Estações de amostragem	%COT	%N	C/N	‰ δ ¹³ C		
Pão de Açúcar -AL	15,1	1,97	7,68	-21,3		
Gararu – SE	11,4	1,65	6,90	-21,4		
Pindoba – SE	22,2	2,22	10,0	-20,2		
Ilha das Flores -SE	22,5	2,26	9,93	-21,9		

✓ Fonte de matéria orgânica (MO) produzida principalmente por macrófitas.

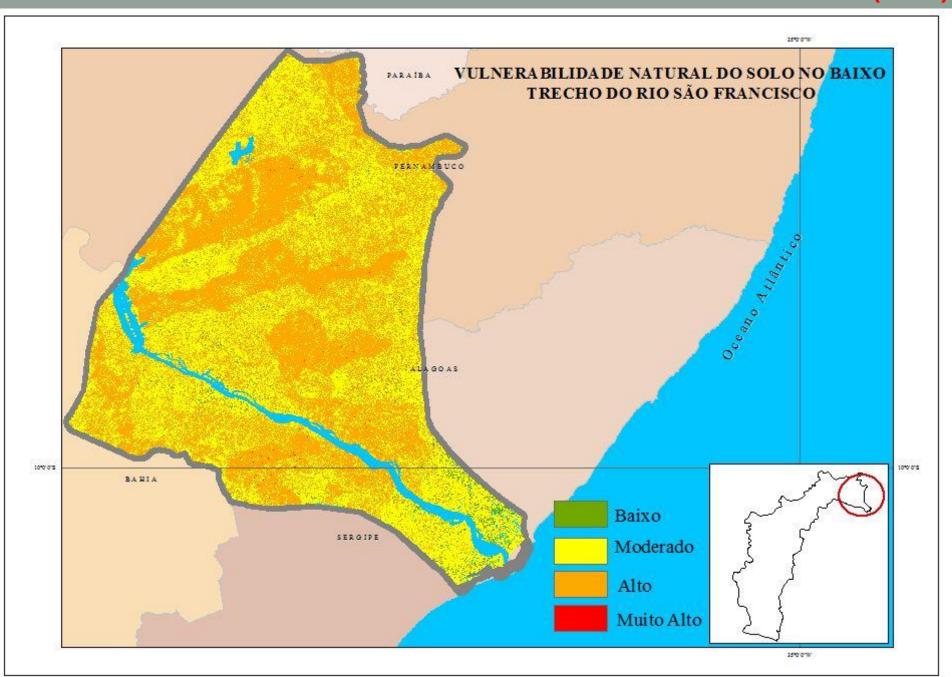
Meyers (1994)

✓ Enriquecimento de ¹³C: MO composta principalmente por plantas, macrófitas e fitoplâncton. Silva et al. (2012)

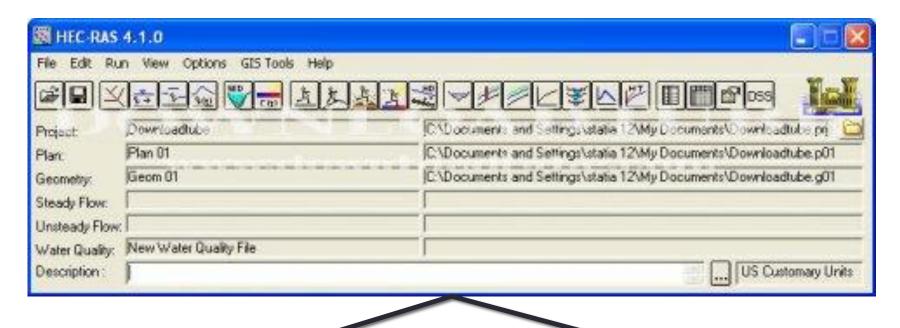
ANÁLISE INTEGRADA DA VULNERABILIDADE NATURAL À PERDA DO SOLO NO BAIXO CURSO DO RIO SÃO FRANCISCO

No intuito de definir o mapa de vulnerabilidade que indica as regiões mais suscetíveis à perda de solo, no baixo curso do rio São Francisco, foi utilizado o método de sobreposição ponderada, com o auxílio do Sistema de Informações Geográficas (SIG). Para tanto, foram utilizadas as seguintes variáveis de análise: Tipo e Uso do Solo; Declividade do Terreno; Vegetação; Índice de Aridez e Índice de Vegetação por Diferença Normalizada (NDVI).

Peso das variáveis e escala de vulnerabilidade


Variáveis	Peso (%)		1- Muito baixa			
Tipo de Solo	15	FI-		Nível de Vulnerabilidade		
Uso do solo	20	Escala Numérica	2 – Baixa			
Vegetação	20	(Risco)	Z - Daixa			
Declividade/Relevo	15	(Kisco)	3 – Moderada			
NDVI	15		4 – Alta		1	
Índice de aridez	15		5 - Muito alta		•	

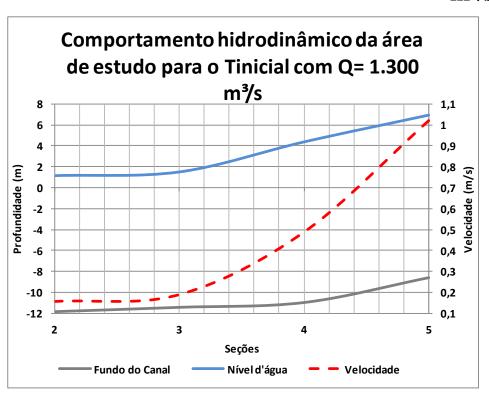
ANÁLISE INTEGRADA DA VULNERABILIDADE NATURAL À PERDA DO SOLO NO BAIXO CURSO DO RIO SÃO FRANCISCO

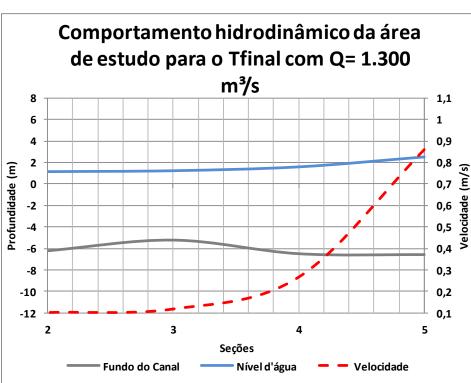

Visita de campo para identificar pontos de controle da área de estudo.

O maior cuidado à perda de solo encontra-se nas margens do rio que, em praticamente toda extensão apresenta-se com problemas de erosão. A erosão das margens do rio é uma das causas do arraste e acúmulo de sedimentos em sua calha. Esse fenômeno tem sido agravado pela dinâmica do fluxo de vazão controlado pela operação dos reservatórios associado à carência de matas ciliares. Gordon & Meentemeyer (2006) verificou em seus estudos que a operação dos reservatórios em conjunto com o uso da terra tem influenciado alterações espaciais e temporais na morfologia do canal e na redução das matas ciliares em bacias hidrográficas.

Visita de campo para identificar pontos de controle da área de estudo.

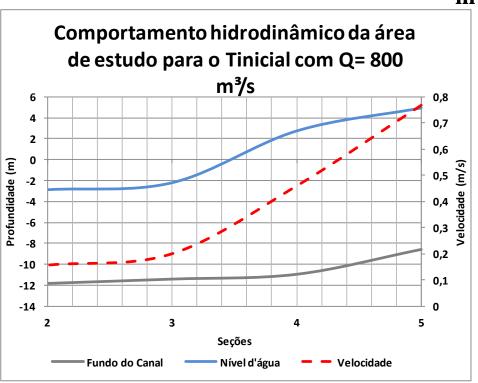
ANÁLISE DO TRANSPORTE DE SEDIMENTOS

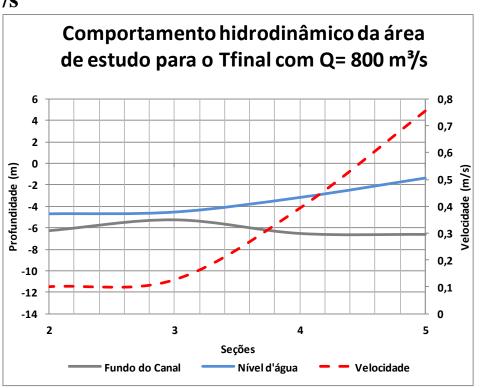



Modelo Unidimensional que não considera a interferência de maré Pequena amostra em um percurso de 274 km (4 pontos de batimetria)

LIMITAÇÕES DO TRABALHO – RESULTADOS PRELIMINARES

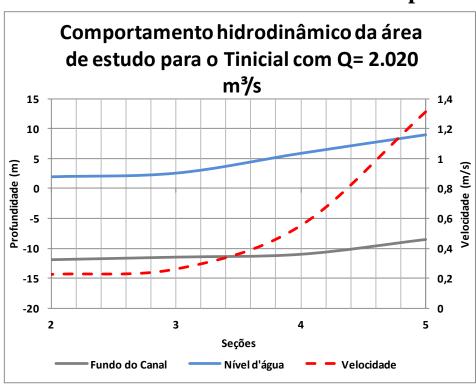
Implicações quanto ao transporte de sedimentos

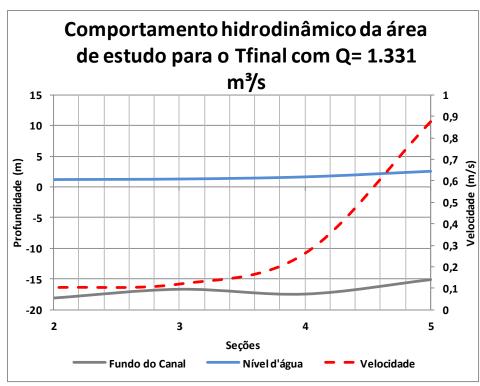

Perfil longitudinal da área de estudo, apresentando o fundo do canal, a profundidade e velocidade para as vazões no tempo inicial e final, com relação à vazão constante de 1.300 m³/s



Implicações quanto ao transporte de sedimentos

Perfil longitudinal da área de estudo, apresentando o fundo do canal, a profundidade e velocidade para as vazões no tempo inicial e final, com relação à vazão constante de 800 m³/s



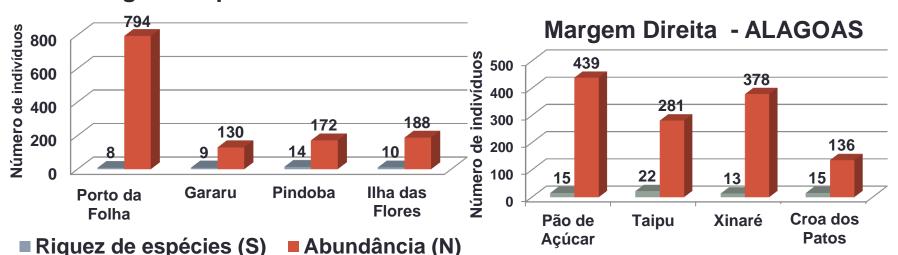


VERIFICA-SE QUE O FUNDO DO CANAL VARIA NUM PERÍODO DE 1 ANO, EM VIRTUDE DO TRANSPORTE DE SEDIMENTOS.

Implicações quanto ao transporte de sedimentos

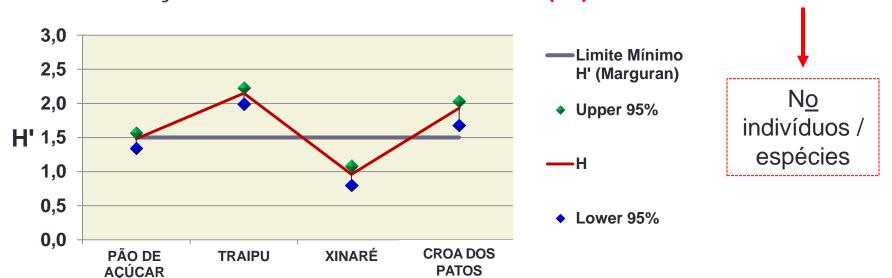
Perfil longitudinal da área de estudo, apresentando o fundo do canal, a profundidade e velocidade para as vazões no tempo inicial e final, com relação ao hidrograma ambiental no período seco

Comparando os comportamentos hidrodinâmicos analisados, constatou-se maior velocidade na aplicação da vazão ambiental, sendo aproximadamente 90% maior do que a obtida na inserção da vazão de restrição, proporcionando, assim, maior sazonalidade na área de estudo

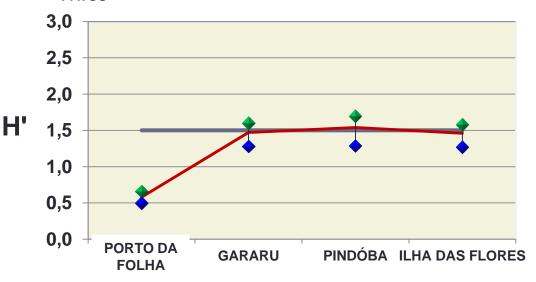

- A sazonalidade da vazão fornece melhores condições tanto na morfologia do rio, quanto na heterogeneidade do ecossistema deste e de suas margens;
- A ocorrência de assoreamento é verificada em maior intensidade no trecho entre as cidades de Traipú e Propriá, cuja velocidade é mais baixa, cerca de 50%, e há ocorrência de margens com tipo de solo Neossólico

A aplicação de uma vazão mínima de restrição induz no aparecimento de alterações morfológicas, como é o caso de bancos de areias, no período de um ano, mediante a alteração de 50% do leito do fundo do rio.

- Parâmetros ecológicos de comunidades bentônicas:
- Abundância
- > Riqueza de espécies
- Frequências de ocorrência
- Índices de Diversidade


Os resultados sugerem uma heterogeneidade qualitativa, relativa baixa dentro e entre os grupamentos das comunidades representadas nas amostras obtidas no trecho investigado do rio.

Margem Esquerda - SERGIPE



■ Riquez de espécies (S) ■ Abundância (N)

Distribuição da Índices da Diversidade (ID) de Shanon-Weiner

ID < onde tem maior abundância e significante contaminação por elementos traço!

Composição da Ictiofauna

- Um total de 54 espécies de água doce foi registrado para o baixo curso do São Francisco, entre as quais, 10 espécies foram introduzidas na área em estudo (relação com a diminuição do fluxo);
- Além destas foram registradas 20 espécies marinhas totalizando 74 espécies, o que indica uma substituição de espécies nas localidades próximas a foz causada pela invasão da água do mar como consequência da diminuição da vazão a montante.
- 45 espécies foram relacionadas no relatório da CODEVASF (2003);
- BURGER (2008) relacionou 53 espécies, 47 de água doce.

CODEVASF. 2002. Subprojeto 2.1 – Mapeamento Temático de Uso da Terra no Baixo São Francisco. In: GERENCIAMENTO INTEGRADO DAS ATIVIDADES DESENVOLVIDAS EM TERRA NA BACIA DO SÃO FRANCISCO Relatório Final Brasília: ANA/GEF/PNUMA/OEA. 162 p.

BURGER, R. **2008**. Ictiofauna do baixo rio São Francisco à jusante da barragem de Xingó: Inventário e caracterização taxonômica. Monografia de Bacharelado, Universidade Federal da Bahia. 132 p.

Espécies Introduzidas

Estas espécies representadas principalmente por **Ciclídeos** e o tucunaré

como a tilápia

e poecílideos

Barrigudinhos

como o guppy ou pariviva,

são normalmente sedentárias e tolerantes;

Em contraste, as espécies nativas são mais exigentes em relação a qualidade do habitat e muitas delas reofílicas (realizam piracema), inclusive aquelas alvo da pesca como piaus, p.ex.

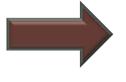
Pesca

Cinco espécies pescadas em abundância : Chira, Piau, Piau-cotia, Cari e Pacu (Peso-Aguiar, 2008);

Das espécies migradoras apenas a **chira** (*Prochilodus argenteus*) é pescada atualmente em abundância;

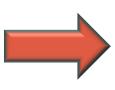
Espécie	Nome popular	Origem	Tolerância	Habitat
Prochilodus argenteus	Chira	Nativa	Alta	Migradora
Leporinus spp.	Piaus	Nativa	Média	Migradora
Astronotus ocellatus	Apanhari	Introduzida	Alta	Sedentária
Cichla monoculus	Tucunaré	Introduzida	Alta	Sedentária
Oreochromis niloticus	Tilápia	Introduzida	Alta	Sedentária
Tilapia sp.	Tilápia	Introduzida	Alta	Sedentária
Poecilia vivípara	Barrigudinho	Nativa	Alta	Sedentária
Poecilia reticulata	Barrigudinho	Introduzida	Alta	Sedentária
Myleus micans	Pacu, CD	Nativa	Média	Sedentária

 Atualmente verifica-se um baixo número e abundância de espécies migradoras, fato este que está relacionado à diminuição direta do fluxo e com a perda de conectividade a partir da formação de barreiras representadas pela construção das diferentes barragens a montante.


Does longitudinal connectivity loss affect the distribution of freshwater fish?

P. Branco*, P. Segurado, J.M. Santos, P. Pinheiro, M.T. Ferreira

CONSIDERAÇÕES FINAIS


- A salinidade da água do trecho estudado triplicou seu valor em dois anos!
- A origem da MO encontrada naquele trecho do rio pode ser explicada pela redução de vazões, que provoca baixa hidraulicidade, mantendo alí o aporte de material marinho no sedimento (Aumento da salinidade da água???)
- O Sedimento do baixo São Francisco está contaminado com cádmio, em nível que pode causar efeitos adversos à biota, em todas as localidades onde foi amostrado.
- Na localidade de Pão de Açúcar-AL, o sedimento apresenta contaminação por arsênio e cromo também, embora em nível mais baixos, havendo alguma possibilidade de ocorrência de efeitos adversos ao biota.
- A concentração elevada de fósforo (P) no sedimento, principalmente na localidade de Croa dos Patos - AL, parece merecer atenção, visto que pode sinalizar risco de processo de eutrofização do trecho do rio.

CONSIDERAÇÕES FINAIS (Cont.)

O macrozoobentos no Baixo Rio São Francisco, destacou a representatividade qualitativa dos invertebrados (insetos, crustáceos e moluscos)*, que integram a biodiversidade límnica ribeirinha de ambientes similares

* Arthropoda e Mollusca

A análise da composição atual da ictiofauna revela um empobrecimento do ecossistema aquático do baixo Rio São Francisco, o que reflete na diminuição da riqueza de espécies, no grande número de espécies não nativas, na redução do número de espécies migradoras e comerciais e na maior abundância de espécies tolerantes.

Obrigada!

vaniaroc@ufba.br, vpameiracampos@gmail.com

dfgomes@ufba.br, doridsonfg@gmail.com

mpeso@ufba.br, marlene.peso@gmail.com

alexandreclistenes@gmail.com